

केंद्रीय भूमि जल बोर्ड जल संसाधन, नदी विकास और गंगा संरक्षण विभाग, जल शक्ति मंत्रालय

भारत सरकार

Central Ground Water Board

Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES EAST KHASI HILLS DISTRICT, MEGHALAYA

उत्तर पूर्वी क्षेत्र, गुवाहाटी North Eastern Region, Guwahati

GOVERNMENT OF INDIA

MINISTRY OF JAL SHAKTI

DEPARTMENT OF WATER RESOURCES, RIVER DEVELOPMENT & GANGA REJUVENATION

REPORT ON

"AQUIFER MAPPING AND MANAGEMENT PLAN OF EAST KHASI HILLS DISTRICT, MEGHALAYA"

(AAP 2018-19)

By

Smt. Preeti Pandey Junior Hydrogeologist (Scientist-B)

Under the supervision of Shri Tapan Chakraborty Officer In Charge, SUO, Shillong & Nodal Officer of NAQUIM, NER

Acknowledgement

I would like to acknowledge all the below mentioned for their untiring help and support in all aspects related to this work.

I would like to extend my heartfelt gratitude to Shri G. L. Meena, Regional Director, CGWB, NER, Guwahati for his constant support and guidance during the course of this study.

I render my outmost and sincere thanks to my supervisor Shri Tapan Chakraborty, Officer In Charge, SUO, Shillong & Nodal officer of NAQUIM, NER for all the help, support, guidance, technical inputs, encouragement and also preparing the ground water resources and management strategies of this report.

Sincere thanks to Shri Shasinlo Kent, Scientist-B and Shri Vekhosa Kezo, Scientist-B for all the help and support.

I would like to thank Dr Keisham Radhapyari, Scientist-B (Chemist) and her team for analysing the ground water samples and providing the data. Thanks are due to the Geophysical team of CGWB for geophysical data generation.

I thank all the Engineers and Drilling staff of CGWB, Division VII, Guwahati for their contribution in ground water exploratory drilling activities in the study area.

I sincerely thank Geological Survey of India, North East Space Application Centre, Survey of India and Indian Meteorological Department for providing the valuable data and maps.

I would also like to thank Meghalaya State Government officials of Water Resource Department, Public Health Engineering Department, Statistical Department and Agricultural Department for providing all the necessary information of the study area.

I thank all the officials, staff and drivers of CGWB, SUO, Shillong for their help and support during the course of this work.

CONTENTS

Page no.

1.	Introduction	1-14
	1.1 Objectives	1
	1.2 Scope of the study	1-2
	1.2.1 Data compilation & data gap analysis	1
	1.2.2 Data generation	1
	1.2.3 Aquifer map preparation	1-2
	1.2.4 Aquifer management plan formulation	2
	1.3 Approach and methodology	2
	1.4 Area details	2-3
	1.5 Data Availability, data adequacy and data gap analysis	3-4
	1.6 Demography	4&7
	1.7 Communication	5
	1.8 Land use	5 & 8
	1.9 Soil	9-10
	1.10 Agriculture	11
	1.11 Irrigation	11
	1.12 Industries	11
	1.13 Forest	11
	1.14 Drainage	11-12
2.	Data Collection and Generation	13-17
	2.1 Hydrogeological	13-15
	2.1.1 Water level monitoring	13
	2.1.2 Preliminary yield test & slug test	13
	2.1.3 Dug well pump test	13
	2.1.4 Soil Infiltration studies	13
	2.2 Hydrochemistry	16
	2.3 Geophysical studies	16 16 17
<u> </u>	2.4 Ground water exploration studies	16-1/
3.	Data interpretation, integration and aquifer mapping	18-35
	3.1 General hydrogeology and occurrence of ground water	18
	3.1.1 Occurrence of ground water in shallow aquifer	18
	3.1.2 Occurrence of ground water in deeper aquifer	18
	3.1.3 Springs	18-19
	2.2 A guifer system	20-22
	3.5 Aquiler system	22-28
	2.2.2 Quarterite of Shillong group	20
	3.3.2 Quartzhe of Shillong group	20-27
	2.2.4 Limestone/Sendstone	27
	2.4 A guifer geometry	20
	3.5 Aquifer properties	28
	3.5 Aquiler properties	20 25
	3.6.1 Ground water quality of shallow aquifer	29-33
	3.6.2 Ground water quality in deeper equifer	31_33
	3.6.2 Water quality of springs	33_35
4	Urban Hydrogeology Greater Shillong	35-33
4.	4.1 Introduction	36- 4 3
	4.2 Physiography & drainage	36
	4 3 Soil type	36-37
	4.4 Hydrogeological conditions in urban Shillong	37-38

4.4.1 Geology	37
4.4.2 Groundwater scenario	37-38
4.4.3 Occurrence of Groundwater as springs	38
4.5 Groundwater resources- Greater Shillong	41
4.5.1 Groundwater recharge	41
4.5.2 Groundwater extraction	41
4.6 Hydrochemistry	41-42
4.7 Major Groundwater realted problems	42
4.8 Groundwater development strategy	42-43
5. Groundwater Resources	45-46
5.1 Ground water resources- Recharge for various season	45-46
5.2 Groundwater Draft for Various Purposes	46
5.3 Stage of Groundwater Development & Categorisation of the	
Blocks	46
6. Ground water related issues	47
6.1 Low stage of ground water development	47
6.2 Ground water quality	47
7. Management strategies	48-52
References	
Annexures	
Field Photographs	

List of figures

Page no.

Fig 1.1 Existing data of district for data gap analyes	5
Fig.1.2 Land utilization map of East Khasi Hills	8
Fig.1.3 Soil map of East Khasi Hills district	10
Fig. 1.4 Drainage map	12
Fig. 2.1 Location of Soil Infiltration Test carried out in East Khasi Hills District	16
Fig 2.2 Location of exploratory wells in East Khasi Hills District	17
Fig.3.1 Principal Aquifers, East Khasi Hills District	18
Fig 3.2 Pre-monsoon spring discharge, East Khasi Hills District	19
Fig 3.3 Post-monsoon spring discharge in East Khasi Hills District	20
Fig. 3.4 Pre-monsoon depth to water level of Unconfined Aquifer	20
Fig. 3.5 Post-monsoon depth to water level of Unconfined Aquifer	21
Fig. 3.6 Pre-monsoon depth to water level of Confined Aquifer	21
Fig. 3.7 Post-monsoon depth to water level of Confined Aquifer	22
Fig.3.8- 3.12 Hydrogeological section lines in East Khasi Hills District	23-25
Fig.3.13 EC values in Unconfined Aquifer	30
Fig.3.14 pH values in Unconfined Aquifer	30
Fig.3.15 Fe concentration in Unconfined Aquifer	31
Fig.3.16 EC values in Confined Aquifer	32
Fig.3.17 pH value in Confined Aquifer	32
Fig.3.18 Fe concentration in Confined Aquifer	33
Fig.3.19 EC value in springs	34
Fig. 3.20 pH values in springs	34
Fig. 3.21 Fe concentrations in springs	35
Fig. 4.1 Urban Componets of Shillong	39
Fig. 4.2 Location of springs and dugwells in urban Shilllong	40
Fig. 4.3 Location of EW, PHE wells and private wells in urban Shilllong	40
Fig. 4.4 Hydrogeology Map of urban Shilllong	44

List of tables	Page no.
Table 1.1 Administrative setup of East Khasi Hills District	3
Table 1.2 Data Availability and Data Gap Analysis in Aquifer Mapping Studies	4
Table 1.3 Toposheet wise data availability, data gap and required data generation	6-7
Table 1.4 Block level population figure as per 2011 census	7
Table 1.5: Land use pattern in East Khasi Hills District (area in hectares)	8
Table 1.6 Area under different crops and their productivity East Khasi Hills Distric (2015-16)	t 11
Table 2.1 Location of Springs in East Khasi Hills District district	14
Table 2.2 Details of Dug well pump test results	15
Table 2.3 Details of Soil Infiltration Test studies results	15
Table 2.4 Exploratory wells constructed before NAQUIM, East Khasi Hills Distric	t 17
Table 2.5 Exploratory wells constructed during NAQUIM, East Khasi Hills Distric	et 17
Table 3.1 Location wise details of fracture encountered in Archaean gneissic complex	26
Table 3.2 Location wise details of fracture encountered in Quartzite	27
Table 3.3 Location wise details of fracture encountered in Intrusives	27
Table 3.4 Location wise details of fracture encountered in Limestone/Sandstone	28
Table 3.5 Chemical quality/ water samples from dug well, East Khasi Hills District	t 29
Table 3.6 Chemical quality of ground water in deeper aquifer	31
Table 3.7 Chemical quality of spring water, East Khasi Hills District	33
Table 4.1 Details of Chemical analyses results of GW samples (2016-17) in Urban Shillong	41
Table 5.1 Recharge from various sources (ham)	46
Table 7.1. Cropping pattern data, East Khasi Hills District.	49
Table 7.2 a. Cropping pattern, proposed cropping pattern, intended cropping intensity, East Khasi Hills District.	49
Table 7.2 b. Proposed cropping pattern with water deficit months and IWR, East Khasi Hills District	49
Table 7.3 Crop-wise and month-wise precipitation deficit (mm) using CROPWAT 8 for East Khasi Hills District.	51
Table 7.4 Irrigation water requirement (ham) of East Khasi Hills	51

ABBREVIATION

AAP	Annual Action Plan
AMP	Aquifer Management Plan
AQM	Aquifer Mapping
BIS	Bureau of Indian Standards
BDL	Below detectable level
BCM	Billion Cubic Metres
BW	Bore well
CGWB	Central Ground Water Board
DGM	Directorate of Geology and Mining
DTW	Depth to water table
DW	Dug Well
EC	Electrical Conductivity
EW	Exploratory Well
Fe	Iron
GL	Ground Level
GSI	Geological Survey of India
GEC	Ground water Estimation Committee
GW	Ground Water
GWMS	Ground Water Monitoring Stations
Ha	Hectare
Ham/ham	Hectare meter
ham/yr	Hectare meter per year
IMD	Indian Meteorological Department
Km	Kilometer
LPM/lpm	Litres per minute
LPS/lps	Litres per second
m	metre
m bgl	meters below ground level
MCM	Million Cubic Meter
mm	Milli meter
mg/l	milligram/litre
MP	Measuring Point
m amsl	Metre above mean sea level
NER	North Eastern Region
NAOUIM	National Aguifer Mapping and Management Plan
NESAC	Norh Eastern Space Applications Centre
OW	Observation Well
рH	Potential of Hydrogen
Ppm	Parts per million equivalents to mg/l
Pz	Piezometer
Sq.Km/sq.km.	Square Kilometre
SWL	Static water level
TDS	Total dissolved solid
TH	Total Hardness
uS/cm	Microsimens/centimetre
°C	Degree Celsius
FAO	Food and Agriculture Organization (United Nations)
8"	Eight Inches
NA	Not Available

EXECUTIVE SUMMARY

Aquifer Mapping studies and Management Plan has been carried out in East Khasi Hills district, Meghalaya under National Aquifer Mapping and Management Plan (NAQUIM) programme with an objective to know the different aquifer system prevailing in the study area, to decipher the vertical and lateral extend of the aquifer down to the depth of 200 m, its characteristic, quantity as well as quality so as to bring a complete sustainable and effective aquifer management plan for ground water resources development in the study area. These studies has been done through multi-disciplinary approach so as to achieve the said objectives.

The total coverage area (mapable area of the district) of aquifer mapping and management plan is 1053 sq.km, out of 2748 sq.km of the district. The area is underlain by consolidated rocks of Archaean Gneissic complex, Granite pluton, limestone, Quartzite and Phyllites (Shillong Group), with narrow belt of dolerite and ultrabasic sills and dykes from khasi green stone belt with limited areal extent in North-Central part. Small patches of conglomerate and sandstone from Khasi Group of rocks are also found in south western part of the district.

Occurrence of ground water in the study area is mainly in weathered and fractured Gneissic, Granite pluton Quartzite formation and to a very less extent in dolerite dykes and sills at some places. The different hydrogeological data are generated through intensive field data collection and testing. The aquifer system in this district can be divided as a two aquifer system viz., first aquifer (shallow) and second aquifer (deeper). Shallow or first aquifer consists of weathered residum where ground water occurs under water table condition and is mainly developed through construction of dug wells. The second aquifer is the deeper aquifer which tapped the fractured zone and is mainly developed through boring and construction of tubewells Based on the study of litholog and analysis of depth of construction of dug wells and bore wells, it is found that the first aquifer occur within 2 to 35 m bgl. Ground water in the second aquifer occurs under semi-confined to confined condition in the fractures upto the maximum explored depth of 247.6 m bgl.

Ground water exploration has been carried out in different parts of the district to delineate the potential aquifers and their geometry and to determine the hydrogeological parameters of the aquifer systems. To know the different parameters of an aquifer, Aquifer performance test, preliminary yield test and dug well pump tests were carried out during the course of study. Soil infiltration test was also conducted in different parts of the study area to know the infiltration rates at different soil conditions, topography, geology and also to know its suitability and the amount of water recharging in the area and its rainfall infiltration factor.

Study of water level trend and its behavior, both in phreatic and confined condition, were carried out in the aquifer mapping area. Study of springs was also carried out in the study area. Most of these springs are dentified as depression and topographic or fractured springs. It is observed that the discharge of springs in this area ranges from 0.6 to 240 litre/minute during pre-monsoon and 3 to more than 360 litre/minute during post-monsoon season.

In order to study the chemical quality of ground water in the district, water samples both from first aquifer (dug wells and springs) and second aquifer (CGWB Bore well) were collected during the course of field work and were analyzed. Chemical analyses reveal that there is a slightly high concentration of iron in shallow and deeper aquifers. Concentration of Fe in springs is below permissible limit. Rest all other parameters in both shallow and deeper aquifers are within permissible limits.

Surface Geophysical studies in the study area were carried out to delineate the subsurface geology as well as to supplement the data gap under the assignment of Aquifer Mapping. A total of 138 VES were conducted as part of geophysical data prospecting.

Dynamic Groundwater Resources of the study area has been estimated based on the methodology recommended by Groundwater Estimation Committee (GEC'97). The net ground water availability assessed as 9569 ham and the stage of ground water development as 2.45 % which indicate the study area falls under "**safe**" category.

Finally, the aquifer map of the study area is generated based on the inputs from geological, hydrogeological, geophysical and hydrochemical studies and a management plan is prepared with an emphasis on providing irrigation facilities through ground water development as agriculture is the main means of livelihood of the people living in the district. With the help of Agricultural professionals and using "CROPWAT" model software, developed by FAO, a cropping plan is designed for the district through using groundwater irrigation.

1. INTRODUCTION

Central Ground Water Board, North Eastern Region has carried out Aquifer mapping and management plan in East Khasi Hills District, Meghalaya during AAP 2016-17 and 2017-18 covering an area of 1053 sq.km out of the total geographical area of 2784 sq. km. Under National Aquifer Mapping and Management (NAQUIM) program, combination of geologic, geophysical, hydrologic and hydro chemical information is applied to characterize the quantity, quality and sustainability of ground water aquifers. Systematic aquifer mapping will improve our understanding of the geologic framework of aquifers, their hydrogeologic characteristics, quality and also quantifying the available ground water resources potential and proposing plans appropriate to the scale of demand and the institutional arrangements for management. Aquifer mapping at the appropriate scale can help to prepare, implement and monitor the efficacy of various management interventions aimed at long-term sustainability of our precious ground water resources, which, in turn, will help achieve drinking water security, improved irrigation facilities and sustainability in water resources development.

1.1 Objectives

The objectives of this project are to understand the aquifer systems up to 200 m depth, to define the aquifer geometry, type of aquifers, ground water regime behaviours, hydraulic characteristics and to establish groundwater quantity, quality, and sustainability, and to estimate the dynamic and static resources accurately through a multidisciplinary scientific approach on 1:50,000 scale and finally formulate a complete, sustainable and effective management plan for ground water development.

1.2 Scope of the Study:

The activities of this Aquifer Mapping and management plan can be envisaged as follows:

1.2.1 Data Compilation & Data Gap Analysis: One of the important aspect of aquifer mapping programme was the synthesis of the large volume of data already collected during specific studies carried out by Central Ground Water Board and various Government organizations with a new data set generated that broadly describe an aquifer system. The data were assembled, analysed, examined, synthesized and interpreted from available sources. These sources were predominantly non computerized data, which was converted into computer based GIS data sets. On the basis of available data, Data Gaps were identified.

1.2.2 Data Generation: There was also a strong need for generating additional data to fill the data gaps to achieve the task of aquifer mapping. This was achieved by multiple activities such as exploratory drilling, geophysical techniques, hydro-geochemical analysis, remote sensing, besides detailed hydrogeological surveys to delineate multi aquifer system; to bring out the efficacy of various geophysical techniques and a protocol for use of geophysical techniques for aquifer mapping in different hydrogeological environments.

1.2.3. Aquifer Map Preparation: On the basis of integration of data generated from various studies of hydrogeology, aquifers have been delineated and characterized in terms of quality and potential. Various maps have been prepared bringing out characterization of Aquifers, which can be termed as Aquifer maps providing spatial variation (lateral & vertical) in

reference to aquifer extremities, quality, water level, potential and vulnerability (quality & quantity).

1.2.4. Aquifer Management Plan Formulation: Aquifer Maps and ground water regime scenario are being utilized to identify a suitable strategy for sustainable development of the aquifer in the area.

1.3 Approach and Methodology: Aquifer mapping has been carried out by adopting amulti-

disciplinary approach:

- (i) Geophysical Surveys through Vertical Electrical Sounding (VES)
- (ii) Exploratory drilling and construction of tube/bore wells tapping various groups of aquifers
- (iii) Ground Water Regime monitoring by establishing monitoring wells tapping different aquifers at different depths for long term monitoring of water level and quality
- (iv) Pumping test of bore wells and dug wells, soil infiltration test, specific yield determination, intensity and potentials and also to determine the characteristics and performances of existing aquifers at various depths
- (v) Collection of various relevant technical data from the field in aquifer mapping area and also from the concerned State Govt. Agencies and other Institutes dealing with ground water and incorporating these data along with CGWB data for final output.
- (vi) Preparations of a micro level mapping of existing aquifers, their potentials depth wise and sideways in 2D forms viewed from different angles by various GIS Layers.
- (vii) Formulating a complete sustainable aquifer management plan for ground water development.

1.4 Area details: The East Khasi Hills district is situated in the south-central part of Meghalaya having a common border with Bangladesh in the south. The district lies in the central part of the State and occupies a total geographical area of 2,748 km2. It is situated approximately between 25°07" and 25°41" N latitude and 91°21" and 92°09" E longitude. The district comprises of two civil subdivisions, the Shillong Sadar Subdivision with headquarters at Shillong and the Sohra Subdivision with headquarters at Sohra (Cherrapunjee). The district has eight Community and Rural Development Blocks. The whole district was covered under NAQUIM programme. The district has eight C. &R.D. blocks and the details of the block along with their respective headquarters are given in Table 1.1

_						
Name of	Total/	Area in	Headquarter	Total	Number of	Number
District/C.D.	Rural/	Km ²		number	inhabited	of
Block/Town	Urban			of	villages/war	inhabite
				villages/w	ds	d
				ards		villages/
				ui ub		warde
1	2	2	1	5	6	
I East Vhasi	Z Totol	3	4 Shillong	075	0	52
East Knasi	Total Deces	2/48.00	Smillong	975	923	52
HIIIS DISTRICT	Rural	2679.38	-	975	932	52
	Urban	68.62	-	45	45	0
Mawphlang	Total	301.53	Mawphlang	184	184	0
C.D. Block	Rural	301.53	-	184	184	0
Mylliem C.D.	Total	215.33	5 th Mile	97	95	2
Block	Rural	154.51		97	95	2
	Urban	60.82	Shillong	44	44	0
Mawryngkne	Total	285.52	Mawryngkneng	64	64	0
ng C.D.	Rural	285.52	-	64	64	0
Block						
Mawkynrew	Total	345.94	Mawkynrew	71	68	0
C.D. Block	Rural	345.94		71	68	0
Khatarshnon	Total	323.94	Khatarshnong	98	94	4
g Laitkroh			Laitkroh			
C.D. Block	Rural	323.94	-	98	94	4
Mawsynram	Total	509.64	Mawsynram	166	162	4
C.D. Block	Rural	509.64	-	166	162	4
ShellaBholag	Total	351.99	Sohra	139	123	16
anj C.D.	Rural	344.19		139	123	16
Block	Urban	7.80	Cherrapuniee	1	1	0
Pvnursla	Total	414.11	Pynursla	156	133	23
C.D. Block	Rural	414.11		156	133	23

 Table 1.1: Administrative Set up of East Khasi Hills district

This area falls partly or fully in the quadrants of Survey of India Toposheets bearing nos. 780/8, 780/10, 780/11, 780/12, 780/14, 780/15, 780/16, 83C/2 and 83C/3 and is bounded by Ri Bhoi and Assam districts in the north, West Jaintia Hills district in the east, West Khasi Hills and South West Khasi Hills districts in the west and by Bangladesh in the south.

1.5 Data availability, data adequacy and data gap analysis:

Aquifer mapping and management plan is carried out through collaborative of different data. The required data on various attributes of the study are collected from the available literatures of Central Ground Water Board, State Water Resources Department of Meghalaya and various Central and State Government agencies. Toposheet wise (grid wise) the data gap was analysed for the whole district of East Khasi Hills which is shown in table 1.3. Fig 1.1 shows existing data in the district for data gap analyses. The Data Requirement, Data Availability and Data Gap Analysis are presented in table 1.2.

⁽Source: Directorate of Cenus Operations, Meghalaya)

Sl.	Items	Data Requirement	Data Availability	Data Gap
No.				
1	Ground Water Exploration Data	As per requirement of Advanced Geophysical Studies for Integration of data and Validation of Techniques	25 EW	Entire study area
2	Geophysics	Geophysical data of the Study area	138 VES	Entire study area
3	Ground Water Monitoring Regime	Representative Monitoring Wells well distributed over the Study Area	7 Monitoring Well	Entire study area
4	Ground Water Quality	Representative Monitoring Wells well distributed over the Study Area	Water quality data of 7 monitoring wells	Representative Monitoring key Wells covering the entire study area
5	Specific yield (Shallow and deeper aquifer)	5 in shallow aquifer and 4 in deeper aquifer	Nil	Entire study area
6	Climate	Season-wise Rainfall pattern	Nil	Time-series data on Rainfall
7	Soil	Soil map and Soil Infiltration Rate	Soil map	Soil Infiltration studies covering the entire study area
8	Land use	Latest Land Use pattern	2016-17 data is available	Latest data required
9	Geomorphology	Detailed Information on Geomorphology of the area	District level information	
10	Recharge Parameters	Recharge parameters for different soil and aquifer types based on field studies	Recharge parameters given in Ground Water Resources Estimation	Entire study area

 Table 1.2: Data Availability and Data Gap Analysis in Aquifer Mapping Studies

1.6 Demography: As per 2011 Census, East Khasi Hills district has a population of 825,922, out of which 410,749 were male and 415,173 were female respectively. East Khasi Hills ranks 1st in terms of population (8, 25,922) and 4th in terms of area (2748 sq.km.) in the state Meghalaya. In terms of "population per sq.km", East Khasi Hills is the most densely populated district in the state with 301 persons per sq.km as against the state figure of 132 person per square km. Mylliem block has the maximum number of people (2,87,791), followed by Mawphlang and Mawryngkneng block which have 71,491 and 67,291 persons respectively. In terms of sex ratio (921 females per 1000 males), the district stands at a favourable position having the second highest sex ratio in the state. Block level population figure as per 2011 census is given in Table 1.4.

Fig 1.1: Existing data of the district for Data Gap Analyses

1.7 Communication: East Khasi Hills district is well connected to its adjoining districts viz. Assam, Ri bhoi, Jaintia Hills, West khasi hills and South west Khasi Hills districts and the National Highway 40 and 44 E passes through the heart of the district and serves as the lifeline for the State Capital and other districts of the state. The headquarter of the district is at Shillong, which is also the state capital and 100 km from Guwahati. All the eight development block Headquarters that is Mylliem, Mawphlang, Mawsynram, Laitkroh, Shella, Pynursla, Mawkynrew and Mawryngkneng are connected with Shillong, the district headquarter, by metallic roads.

1.8 Land use: Land utilisation statistics provide detailed information of the land use pattern in the area. Based on the land utilization, the total area is divided into various types of landforms such as forest, cultivable land, fallows lands, crops area etc. which in turn reflects the degree of development of agricultural activities and cultivation potential. The land utilization statistics of the East Khasi Hills district is shown in the Table1.4 and land use map is shown in Fig. 1.2.

			Existing data									Data Required/Data Gap									
			A	Aquife	rl			A	quifer	·II			ļ	Aquife	r١			A	quifer	· II	
Topos heet	Gri d	E W	O W	VE S	CH E	W L	E W	O W	VE S	CH E	WL	E W	O W	VE S	CH E	WL	E W	O W	VE S	CH E	W L
780/8	A2	0	0	0	1	1	0	0	0	0	0	0	0	2	0	0	0	0	2	0	0
780/8	A3	0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	1	1	2	1	1
780/8	B3	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	2	0	0
780/10	C2	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	2	0	0
780/10	C3	0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	1	1	2	1	1
780/11	A1	0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	1	1	2	1	1
780/11	A2	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	2	0	0
780/11	A3	0	0	0	0	0	0	0	2	0	0	1	1	0	1	1	1	1	0	1	1
780/11	B1	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	2	0	0
780/11	B2	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1	1	1	1	1
780/11	B3	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	0	1	0	0
780/11	C1	0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	1	1	2	1	1
780/11	C2	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	2	0	0
780/11	C3	0	0	0	1	1	1	0	0	0	0	1	1	2	0	0	0	1	2	1	1
780/12	A1	0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	1	1	2	1	1
780/12	A2	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	2	0	0
780/12	A3	0	0	0	0	0	1	0	0	0	0	1	1	2	1	1	0	1	2	1	1
780/12	B1	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	1	2	0	0
780/12	B2	0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	1	1	2	1	1
780/12	B3	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	2	0	0
780/14	B1	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	2	0	0
780/14	B2	0	0	0	1	1	1	0	1	2	0	1	1	1	0	0	0	1	1	0	1
780/14	B3	0	0	0	0	1	1	0	0	1	0	0	0	2	1	0	0	0	2	0	0
780/14	C1	0	0	0	1	0	0	0	2	0	0	1	1	2	0	1	1	1	0	1	1
780/14	C2	0	0	0	2	0	5	0	2	3	0	0	0	0	0	1	0	0	0	0	0
780/14	C3	0	0	0	0	0	1	0	2	0	0	1	1	2	1	1	0	1	0	1	1
780/15	A1	0	0	0	0	0	3	0	0	0	0	1	1	2	1	1	0	1	2	1	1
780/15	A2	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	2	0	0
780/15	A3	0	0	0	0	0	1	0	0	0	0	1	1	2	1	1	0	1	2	1	1
780/15	B1	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	2	0	0
780/15	B2	0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	1	1	2	1	1
780/15	B3	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	2	0	0
780/15	C1	0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	1	1	2	1	1
780/15	C2	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	2	0	0
780/15	C3	0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	1	1	2	1	1
780/16	A1	0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	1	1	2	1	1
780/16	A2	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	2	0	0
780/16	A3	0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	1	1	2	1	1

Table 1.3: Toposheet wise Data availability, data gap and required data generation in the study area

83C/2	C1	0	0	0	0	0	1	0	0	0	0	1	1	2	1	1	0	1	2	1	1
83C/2	C2	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	2	0	0
83C/2	B1	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	2	0	0
83C/2	B2	0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	1	1	2	1	1
83C/3	A1	0	0	0	0	0	1	0	0	0	0	1	1	2	1	1	0	1	2	1	1
83C/3	A2	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	1	1	2	0	0
83C/3	B1	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	2	0	0
83C/3	B2	0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	1	1	2	1	1
83C/3	C1	0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	1	1	2	1	1
	Tot al	0	0	0	6	4	16	0	11	6	0	25	25	87	42	4	18	27	83	24	2 5

(CHE= Chemical data, WL= Water level data, VES= Vertical Electrical Sounding data,

EW=Exploratory well, OW= Observatory well)

Table 1.4: Block level Population of East Khasi Hills District as per 2011 census

Name of the Block		No of	F	1	
		Household	Total	Male	Female
	Total	58,551	287,791	143,237	144,554
	Rural	17,240	88,191	43,556	44,635
Mylliem	Urban	41,311	199,600	99,681	99,919
	Total	13,117	71,491	35,331	36,160
	Rural	13,117	71,491	71,491	71,491
Mawphlang	Urban	-	-	-	-
	Total	12,219	67,291	33,396	33,895
	Rural	12,219	67,291	33,396	33,895
Mawryngkneng	Urban	-	-	-	-
	Total	7,995	44,602	22,118	22,484
	Rural	7,995	44,602	22,118	22,484
Mawkynrew	Urban	-	-	-	-
	Total	11,273	57,870	28,506	29,364
	Rural	11,273	57,870	28,506	29,364
Pynursla	Urban	-	-	-	-
	Total	10,661	54,039	27,251	26,788
	Rural	8,409	42,317	21,636	20,681
Shellabholaganj	Urban	2,252	11,722	5,615	6,107
	Total	10,145	54,109	27,143	26,966
	Rural	10,145	54,109	27,143	26,966
Mawsynram	Urban	-	-	-	-
	Total	6,587	33,570	16,723	16,847
Khatarshnong Laitkroh	Rural	6,587	33,570	16,723	16,847
	Urban	-	-	-	-
Total		164,064	825,922	410,749	415,173

(Source: Directorate of Cenus operations, Meghalaya)

Land Classifications	Area (in hectares)
A. Geogrphical Area	2,74,800
B. Reporting Area	2,74,787
1. Forests (classed & unclassed)	1,06,956
2. Area not available for cultivation	
a.(i) Area under non-agricultural uses	
b. Barren and uncultivalble lands	
c. Water logged land	
d. Social Forestry	2,987
e. Land under still water	4,732
f. Other land	11,975
TOTAL = (a+b)	
TOTAL (Column a to f)	19,694
(ii) Barren and unculturable lands	33,960
TOTAL = Col. I & ii	53,654
<u>3. Other uncultivable lands</u>	
a. Permanent pastures and other grazing lands	
b. Land under Misc. tree crops & grooves etc.	16,874
c. Cultivable wastelands	48,667
TOTAL = (a+b+c)	65,541
<u>4. Fallow lands</u>	
a. Fallow lands other than current fallows	5,998
b. Current fallows	4,786
<i>TOTAL = (a+b)</i>	10,784
5. Net area sown	37,852
6. Area sown more than once	11,126
7. Total Croped area	48,978

Table 1.5: Land use pattern in East Khasi Hills District, 2015-16

(Source: Directorate of Economics & Statistics, Govt. of Meghalaya.)

(Source; NESAC)

Soil: Geomorphologically, the East Khasi hill is an undulatory one. It comprises of 1.9 denudational high and low hills with deep gorges. The district represents a remnant of ancient plateau of Indian Peninsular Shield which is deeply dissected suggesting several geotectonic and structural deformities that the plateau has undergone. The northern portion of the district is a dissected Shillong plateau gradually rising southwards to the rolling grasslands with gentle river valleys, and then falls sharply in the Southern portion forming deep gorges and ravines in Mawsynram and Shella Bholaganj, bordering Bangladesh. In the southern border areas, there are fringes of alluvial plains that are localized in nature. Soil type of an area is dependent on factors like geology, relief, climate and vegetation. Red Loamy soil is a product of weathering of rocks like granites, gneisses etc which are relatively rich in clay forming minerals. This soil type are rich in organic matter, nitrogen and acidic in nature. They are found exposed in the central part of the district. Laterite soil is a weathering product of rocks like quartzite, schist, conglomerate etc, which are found exposed in the northern area of East Khasi Hills. The soils are rich in iron and aluminium. Alluvial soils are found exposed in the southern part of the district that are rich in potash but poor in phosphate content. They are acidic in nature. The soil in the study area is mostly deep brown, silty clay to clay loam, permeable and acidic in nature. The acidic character is due to leaching of bases caused by high rainfall. The gneisses, quartzite and basic intrusive gave rise to very deep fine texture soils whereas soil developed over granites are coarse loamy and permeable. The soil developed within the intermontane valleys over colluvial and alluvial deposits are light brown to dark grey in colour, poorly drained, strongly acidic clay loams and are used for agriculture.Soil is one of the most important components of the land through which the interaction of all natural factors takes place. The soil classification has been conducted by the Regional Center of National Bureau of Soil Survey and Land Use Planning, for the State of Meghalaya. Accordingly, the soils types are broadly classified into three orders as given below.

- ➢ Red loamy soils
- ➤ Laterite soils
- Alluvial soils

Red loamy soil: This soil occupies the central part of the study area. It is generally loamy and red in colour. These are the result of weathering of rocks such as granites, gneisses, diorites and those which are relatively richer in clay forming minerals but poorer in silica. The exposed red loamy soil is rich in organic matter and nitrogen due to humus contains from the litters of tree leaves, grasses etc. These are acidic and suitable for the cultivation of potatoes, rice, fruits in hills slope and terraces.

Laterite soils: This soil is found in the Northern part of the study area. These are resulted due to the weathering of rocks like granites, quartzite, schist, gneisses, conglomerates etc. This area is rich in iron and aluminum and is yellowish red in colour.

Alluvial Soils: The alluvial soils are found the in the southern part of the district, along Bangladesh border. The soil texture varies from sandy to clayey-loam with varying degree of nitrogen and is acidic in nature. The soils are rich in potash but poor in phosphate content.

It is suitable for cultivation of rich and jute. Soil map of the area is given in Fig 1.3.

(Source: Regional Center of National Bureau of Soil Survey and Land Use Planning).

1.10 Agriculture: Agriculture is the main means of livelihood of the people in the district and about 80 % of the population is dependent on agriculture. The area is endowed with diversified climatic condition thereby offering good scope for cultivation of temperate and subtropical crops. Principal crops grown in the district are rice, maize, millets, oilseeds and pulses. Horticulture products include orange, pineapple, pears, peaches, plums, sohiong, sophi, betel nut and many local fruits. Vegetables like potato, sweet potato, ginger, garlic etc. are also grown. Present area under different crops and their productivity is shown in table 1.6.

Crops	Area (ha)	Avg.Yield (kg/ha)
Autumn rice	284	3282
Winter rice	5439	2308
Spring rice	130	2115
Maize	3113	3361
Millets	261	1241
Pulses	658	3400
Rape and Mustard	93	882
Soyabean	350	1274
Citrus fruits	5786	5022
Arecanut	4924	1206
Рарауа	122	7115
Pineapple	936	7869
Strawberry	9	21889
Potato (summer)	34	6147
Sweet potato	8241	11731
Ginger	1027	10674
Turmeric	121	5851
Chillies	145	2476
Black pepper	185	870

Table 1.6: Area under different crops and their productivity, East Khasi Hills (2015-16)

(Source: Agriculture Department, Govt. of Meghalaya)

1.11 Irrigation: The district does not have any major or medium irrigation projects. Agriculture is dependent mainly on rainfall.

1.12 Industries: From industrial point of view, the study area is still underdeveloped as of now.

1.13 Forest: As per Forest and Environment Department, Meghalaya, East Khasi Hills district has a total area of 1, 06,956 sq.km (as per 2015-16) under forest (classed & unclassed) and social forestry area of 4,732 of sq.km.

1.14 Drainage: The topography controls the drainage system as it divides the state of Meghalaya into two watersheds namely the Brahmaputra system in the North and Meghna /Surma system in the South. Drainage of the East Khasi Hills district in the north flows toward the Brahmaputra River and in the south, the rivers flow towards the Bangladesh plains into Surma River. The important rivers in the northern part are Umtrew, Umiam and Umkhen. The Umtrew (or Digaru) River originates from the west of the Sohpetbneng range in East Khasi Hills District, near Lum Raitong. It flows towards the west till it meets the

waters from the Umiam River which is being diverted by the Umiam Hydel Project. In the southern part, rivers Umiew (or Shella, also known as Bagra), Umngot, Umngi (Balat), etc. all tributaries of the Surma, originating from southern slopes of Khasi Hills, drain one of the world's heaviest rainfall areas and flow southwards into Bangladesh, have violent flows. The drainage pattern is structurally controlled and parallel to sub-parallel in nature. The drainage map is shown in Fig 1.4.

2. DATA COLLECTION AND GENERATION

One of the main objectives of the study was to collect various relevant technical data from the concerned State Government agencies and other Institutes dealing with ground water and incorporating these data along with CGWB data to generate strong data base. Based on the data availability and data gap analysis, the required sub-surface hydrogeological data, groundwater level data, groundwater quality data and Geophysical data were generated.

2.1 Hydrogeological: Occurrence of ground water in the study area is mainly of weathered and fractured Gneissic, Granite pluton and Quartzite formation. The different hydrogeological data are generated through intensive field data collection and testing.

2.1.1 Water level monitoring: In the study area, 8 dug wells (7 existing GWMS), 5 bore wells and 54 nos. of springs are established to study the water level, quality, spring discharge and its behavior periodically.

Phreatic aquifer: A total of 8 dug wells (7 existing GWMS) were established as key wells for periodical water evel monitoring to know the water level trend and its behavior. The key observation wells details are presented in Annexure 3A and the pre and post- monsoon Depth to Water Level maps are presented in Fig 2.1 and 3.6 respectively. The location of key observation wells is given in Annexure 3.

Confined/Semi-confined aquifer: For study of piezometric head in the district, a total of 5 bore wells were monitored periodically. Details of these key observation wells are presented in Annexure 3 and the pre and post monsoon Depth to Water Level in Fig 3.7 and 3.8.

Springs: A total of 54 springs were established and monitored to know the type, discharge and their behaviour. The locations of these springs are given in table 2.1.

2.1.2 Preliminary Yield Test (PYT): A total of 6 preliminary yield tests were carried out during NAQUIM programme in the study area to know the aquifer parameters. The details are shown in Annexure 1.

2.1.3 Dug Well Pump Test: A total of 2 dug well pump test were conducted in the study area to know the specific capacity (Slitchers' Method) of shallow aquifers and its suitability for irrigation purposes. The details are shown in the table 2.2.

2.1.4 Soil Infiltration Studies: Soil infiltration test were conducted using double ring infiltormeter and the constant infiltration rates of different soils were calculated by double ring infiltrometer method. These studies were carried out in different locations to know the infiltration rates at different soil conditions, topography, and geology. This will provide a scientific approach of groundwater recharge, its suitability and to estimate the amount of water recharging in the area, rainfall infiltration factor and will help in calculating ground water resource estimation. The details are shown in table 2. Location of Soil infiltration tests are shown in fig 2.1

S.	Name of	Latitude in	Longitude	Elevatio	Туре	Aquife	Source
No	village/site	degrees	in degrees	n		r	
•	_	decimal	decimal	(mamsl)			
	1	2	3	4	5	6	7
1	Demthring	25°33'30"	91°54'32"	1576	Fracture	Ι	CGWB
2	Madanryting	25°33'13"	91°54'54"	1590	Depression	Ι	CGWB
3	Mawshubuit	25°33'34"	92°55'53"	1634	Depression	Ι	CGWB
4	Lapalang	25°33'51"	91°55'2"	1549	Depression	Ι	CGWB
5	Umpling	25°34'26"	91°55'08"	1493	?	Ι	CGWB
6	Nongmysong	25°35'17"	91°54'48"	1455	Fracture	Ι	CGWB
7	Mawdiangdiang	25°36'44"	91°56'6"	1316	Fracture	Ι	CGWB
8	Ummawlong	25°36'44"	91°24'52"	1222	Depression	Ι	CGWB
9	Mawlai	25°36'04"	91°53'26"	1389	Fracture	Ι	CGWB
10	Lankyrding	25°35'45"	91°54'31"	1441	Fracture	Ι	CGWB
11	Jiengkieng	25°33'43"	91°54'07"	1553	Fracture	Ι	CGWB
12	Ladsaheb	25°32'34"	91°54'10"	1802	Fracture	Ι	CGWB
13	Thangbania	25°32'26"	91°53'58"	1813	Fracture	Ι	CGWB
14	Smit	25°30'0.6"	91°54'21"	1763	Depression	Ι	CGWB
15	Laitdeingsai	25°28'13"	91°55'13"	1846	Fracture	Ι	CGWB
16	Nongthymai	25°27'41"	91°58'42"	1659	Fracture	Ι	CGWB
17	Umphyrnai	25°31'53"	91°54'47"	1748	Fracture	Ι	CGWB
18	Mawryngkneng	25°33'11"	92°03'17"	1308	Fracture	Ι	CGWB
19	Umkhen bridge	25°35'37"	92°03'28"	966	Fracture	Ι	CGWB
20	At Laimer Shiteng	25°35'49"	91°51'16"	1617	Depression	Ι	CGWB
21	Madan Sangmein	25°32'15"	91°50'50"	1809	Fracture	Ι	CGWB
22	Mawkhrie	25°30'02"	91°47'15"	1738	Depression	Ι	CGWB
23	Mawmaram	25°31'16"	91°42'48"	1772	Depression	Ι	CGWB
24	Sohoing	25°29'49"	91°42'41"	1732	Depression	Ι	CGWB
25	Mawphlang	25°27'38"	91°45'35"	1815	Depression	Ι	CGWB
26	Mawdngung	25°29'06"	91°43'10"	1822	Fracture	Ι	CGWB
27	Mylliem	25°30'35"	91°48'43"	1669	Depression	Ι	CGWB
28	7th Mile Mylliem	25°31'45"	91°49'19"	1744	Depression	Ι	CGWB
29	Umtyngar	25°27'28"	91°49'34"	1714	Fracture	Ι	CGWB
30	Kyrdemkhla	25°26'17"	91°48'56"	1832	Fracture	Ι	CGWB
31	Mawkdok	25°25'26"	91°47'30"	1834	Fracture	Ι	CGWB
32	Dawlieh	25°21'35"	91°44'41"	1696	Fracture	Ι	CGWB
33	Sohrarim	25°20'41"	91°44'17"	1668	Fracture	Ι	CGWB
34	Tyrna Mawlong						
	Road	25°14'20"	91°44'32"	652	Fracture	Ι	CGWB
35	Umwaih	25°13'40"	91°41'58"	471	?	Ι	CGWB
36	Ringuir	25°12'30"	91°43'34"	578	Fracture	Ι	CGWB
37	Umkaber Lyngiong	25°25'0.7"	91°41'48"	1665	Depression	Ι	CGWB
38	Tyrsad	25°24'23"	91°39'34"	1644	Fracture	Ι	CGWB
39	kyrphie	25°23'28"	91°39'13"	1650	Depression	Ι	CGWB
40	Weloi	25°21'43"	91°36'53"	1590	Depression	Ι	CGWB
41	Mawsynram	25°18'22"	91°34'56"	1467	Fracture	Ι	CGWB
42	Mawkasain	25°15'50"	91°31'11"	1128	Fracture	Ι	CGWB
43	Mawsynram	25°17'46"	91°34'42"	1383	Fracture	Ι	CGWB
44	Mawpan	25°14'16"	91°26'23"	688	Fracture	Ι	CGWB
45	Rangweng	25°14'24"	91°24'57"	623	Fracture	Ι	CGWB
46	Umlamgrim	25°14'16"	91°26'23"	1642	Fracture	Ι	CGWB
47	Laitlynkgot	25°26'40"	91°50'30"	1833	Depression	Ι	CGWB
48	Pomlum	25°24'54"	91°52'04"	1672	Depression	Ι	CGWB
49	Laitmynreng	25°19'44"	91°53'38"	1447	Fracture	Ι	CGWB
50	Lankyrdem	25°21'08"	91°53'37"	1534	Fracture	Ι	CGWB
51	Mawriang	25°12'05"	91°59'42"	375	Fracture	I	CGWB
52	Bopumsyiem	25°01'23"	92°01'05"	28	Fracture	Ι	CGWB
53	Rngain	25°18'30"	92°54'12"	1472	Fracture	Ι	CGWB

Table 2.1 Location of springs in East Khasi Hills district

Location	Latitude	Longitude	Eleva tion (ma MSL)	Total depth of DW (mbgl)	Diamet er (m)	Measur ing Point (m)	Static Wate r level (m bgl)	Specific capacity (m³/min/ m of DD)
Dhankheti	25°31'57"	91°53'34"	1515	3.60	0.78	0.65	2.41	0.347
Nonymsong	25°34'46"	91°54'24"	1440	4.70	0.75	0.70	3.36	0.15253

 Table 2.2: Details of Dug well Pump test results

Table 2.3: Details of Soil Infiltration Test studies results

							Infilt ratio	
							n	
				Eleva	Soil		rate	
S.N		Lat.(DMS	Lon.(DMS	tion(Thikness		(cm/h	Date of
0.	Location))	m)	(m)	Colour	r)	test
	1	2	3	4	5	6	7	8
	Forest Range							
1	Office	25°15'38"	91°44'15"	1255			32.4	
2	Pomsohmen	25°16'39"	91°43'44"	1348			16.2	
3	Sohra Village	25°17'31"	91°42'54"	1468			3	
4	Umtyngar	25°27'11"	91°49'14"	1764			5.7	
5	EAC	25°32°07"	91°49'26"	1762			27.3	
6	Bhanung	25°31'22"	91°48'58"	1722			31.2	
7	Dympep	25°25'26"	91°47'30"	1853			11.7	
8	Kharkemeh	25°28'36"	91°49'12"	1757			7.2	
9	Pomkaniew	25°27'22"	91°50'11"	1817			2.4	
	Laitlyngkot							
10	village	25°26'02"	91°50'22"	1824			3.6	
						Brownish		
11	Tyrsad	25°24'46"	91°40'37"	1635	1 to 2	yellow	0.15	01.02.18
12	Laitdiengsai	25°28'12"	91°55'12"	1843	1 to 1.2	Brown	0.6	15.12.17
						Yellowish		
13	Golf Links, Polo	25°35'12"	91°53'39"	1431	1 to 2	clayey	5.4	12.02.18
						Brownish		
14	Madan sangmen	25°32'20"	91°50'53"	1788	1 to 2	yellow	42	08.02.18
						Yellowish		
15	Pynursla	25°18'24"	91°54'16"	1308	1 to 1.5	clayey	8.1	02.02.18
16	Lawsohtun	25°18'24"	91°54'16"	1596	2.5 to 3	yellow	10.5	13.02.18
17	Laban	25°33'15"	91°52'01"	1596	2 to 2.5	yellow	16.8	01.03.18
						yellowish		
18	Mawryngneng	25°33'17"	92° 3' 9"	1306	1 to 2	brown	17.1	28.03.18
						Yellowish		
19	Umphyrnai	25°31'53"	91°54'47"	1768	1 to 2	clayey	37.5	28.03.18
						Yellowish		
20	Lapalang	25°33'51"	91° 55' 2"	1544	2 to 2.5	clayey	2.4	09.02.18
						Reddish		14.02.201
21	Nongkohlew	25°38'45"	91°56'38"	1065	2 to 3	brown	42	7
22	Mawsiatkhnam	25°39'59"	91°58'23"	1029	1 to 2	Brown	8.4	14.02.18

2.2 Hydrochemistry: The quality of ground water is as important as that of the quantity. In order to study the chemical quality of ground water in the district, water samples from both first aquifer (dug wells and springs) and second aquifer (CGWB Bore well) were collected during the course of field work. Ground water samples were analyzed in the regional chemical laboratory, Central Ground Water Board, North Eastern Region, Guwahati for many chemical parameters. The analytical data are given in Annexure 2.

2.3 Geophysical studies: Surface Geophysical studies in the study area were carried out before the NAQUIM programme to delineate the subsurface geology as well as to supplement the data gap under the assignment of Aquifer Mapping. A total of 138 VES were conducted (during earlier AAPs). The inferences drawn on the basis of interpreted results could not be obtained for deeper formation due to the limitations of unavailability of large and straight stretch for current electrode separation. However, taking into account the interpreted results as well as the apparent resistivity, inferences have been approximated to shallow to deeper depth at fewplaces. The detail results are given in Annexure 6.

2.4 Ground Water Exploration Studies: Ground water exploration has been carried out in different parts of the district to delineate the potential aquifers and their geometry and to determine the hydrogeological parameters of the aquifer systems. Before NAQUIM programme was started in the district, 18 EW were constructed and as a part of data gap generation 7 EW were constructed during the course of study. Details of the exploratory wells are presented below in the table 2.4 and table 2.5.

The exploratory wells which were constructed before and during NAQUIM are shown in fig 2.2

Table 2.4: Exploratory wells constructed before NAQUINI, East Knast Hills District									
S.N				Elevation(AAP	Depth			
0.	Site Name	Latitude	Longitude	m)	Year	drilled (m)			
1	Dymper	25°25'08"	91°46'47"	1914	1995-96	80			
2	Kyanton-U-Mon	25°031'30"	91°53'15"	1847	1995-96	70			
3	Mamluh	25°031'47"	92°9'45"	1331	1995-96	201.13			
4	Mawryngkneng	25°033'08"	92°4'02''	1316	1995-97	59.45			
5	Sohiong	25°029'45"	92°42'52"	703	1995-97	64			
6	Umlyngka	25°034'04"	91°51'05"	1554	1995-97	80			
7	Mawsmai -	25°014'30"	91°51'05"	1203	2003-04	247.6			
8	Mylliem 12 Mile	25°028'32"	91°51'05"	1805	2003-04	231.95			
9	NEHU	25°036'26"	91°51'05"	1395	2003-04	100.9			
10	Thynroit	25°029'52"	91°51'05"	1665	2003-04	80			
11	MES, Shillong	25°034'02"	91°51'05"	1546	2007-08	108.8			
12	ASI, Mawpet	25°033'08"	91°51'05"	1678	2007-08	140.7			
13	Umtyngar	25°027'50"	91°51'05"	1747	2011-12	200.05			
14	Mawdiangdiang	25°035'50"	91°51'05"	1391	2011-12	200.05			
15	Mawkynrew	25°026'00"	91°59'58"	1546	2011-12	153.7			
16	Mawlyngad	25°031'23"	91°55'34"	1729	2011-12	200.05			
17	LaitkorLumeh	25°032'27"	91°53'03"	1878	2011-12	190.95			
18	Mawlyngad	25°31'23"	91°56'55"	1705	-	200.05			

Table 2.4: Exploratory wells constructed before NAQUIM, East Khasi Hills District

7	Table 2	2.5: Ex	ploratory	wells o	constructed	during	NAQ	UIM,	East 1	Khasi	Hills	Distric	t
												Damth	

						Depth
					AAP	drilled
S.No.	Site Name	Latitude	Longitude	Elevation(m)	Year	(m)
1	Laitkor	25°32'14"	91°53'33"	1873	2016-17	178.89
	Cherrapunjee, NIT	25°15'01"	91°44'39"	1267		111.59
2	campus				2016-17	
3	Nongpyiur	25°32'31"	91°49'25"	1766	2016-17	215.8
4	JNV, Mawplang	25°27'20.6"	91°58'10"	1670	2016-17	203.56
5	Shillong, WRD	25°33'56.3"	91°53'46"	1560	2016-17	93.13
6	Mawiong	25°37'43"	91°53'12"	1279	2016-17	200.33
7	Lapalang	25°33'56"	91°53'46"	1550	2016-17	111.59

3. DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING

3.1 General hydrogeology and occurrence of ground water: The hydrogeological formation of the study area comprised of Gneissic complex of Arcaean to Proterozoic, Quartzite of Palaeo-Meso-Proterozoic, Khasi Basic- Ultra basic intrusive of Proterozoic, Granite plutons (Mylliem granite) of Neo Proterozoic to Early Proterozoic formation. The presence of weak planes like fractures and joints in these hard rock formation forms the principal aquifer in the area. The ground water in the district occurs under unconfined, semiconfined to confined conditions. Study of dug wells and exploration data reveals the presence of phreatic, shallow and deep fractured aquifers in the district. The principal aquifer of the study area is shown in fig 3.1

3.1.1 Occurrence of ground water in shallow aquifers: The depth of shallow aquifer in the district ranges from 1.5 to 10.74 meters. This shallow aquifer occurs under unconfined to semi confined condition. Ground water from shallow aquifer is extracted through different types of ground water extraction structures such as dug wells.

3.1.2 Occurrence of ground water in deeper aquifers: The deeper aquifer occurs as semi-confined to confined condition where ground water is found in the fractured zone of consolidated Quartzite, Gneiss Granite, Kahsi greenstones and limestones. The drilled depth of exploratory wells tapping this aquifer ranges from 64.0 to 247.60 m bgl. The number of fractures and its zones encountered varies in all the places which show the complexity of the hydrogeology of consolidated hard rock formation. Two artesian wells were found in the study area, one was at Lawsohtun campus, Shillong (drilled by CGWB earlier) where the discharge is 10.8 m^3 / hr and the other one is at Power Grid campus, Shillong.

3.1.3 Springs: Spring is defined as a localized natural discharge of ground water appearing at the ground surface as a current of flowing water through well-defined outlets. The discharge may vary from a trickle to a stream. Groundwater flow from springs is governed mainly by

three inter-related factors: geology (type, distribution and permeability characteristics of geologic units), topography (landforms and relief), and climate (timing and amount of precipitation). Topography drives the groundwater flow downhill and largely dictates the occurrence of the spring itself. Climate would influence the timing and amount of recharge to the flow system and the volume and variability of discharge. Groundwater obtained from springs is similar to water pumped from shallow wells. The study of spring has been carried out in the aquifer mapping area and it was found that the location of the springs is mainly restricted to foothills and intermontane valleys. Most of the villagers are highly depended on the springs for their drinking and domestic purposes. A total of 5 springs were established and monitored periodically during the course of study. Most of these springs are depression and topographic or fractured springs. It is observed that most of the springs in the district are either depression or topographic or fractured springs. Discharge of springs in general varies from 0.6 to120 litre/minute during pre monsoon and from 3 to180 litre/minute during postmonsoon season. Some springs have high discharge even in premonsoon season viz. springs at Mawlai, Mawsynram and Mawryngkneng (240 litres/minute) while some went dry during premonsoon season viz. spring at Umtyngar. It is observed that the discharge of springs increases during post monsoon. Most of the springs showed drastic increase in discharge during post monsoon season. While a few springs have a gradual impact of rainfall on their discharge.

3.2 Depth to Water Level: Study of water level and its behaviour both in phreatic and confined condition were carried out in the aquifer mapping area. A total of 8 Dug wells were established as key wells for periodical monitoring to know the water level trend and its behaviour in phreatic condition. The depth to water level in these dug wells ranges from 0.20 to 8.10 m bgl during pre-monsoon and ground level to 3.52 m bgl during post-monsoon season and is shown in fig 3.4 and fig. 3.5. Average water level fluctuation is 0.827 m.

To study the piezometric head, 5 bore wells were monitored periodically. The piezometric head ranges from 4.42 to 42.88 m bgl during pre-monsoon and 4.22 to 23.67 m bgl during post-monsoon season and is shown in fig 3.6 and fig. 3.7 respectively.

3.3 Aquifer system: The entire study area is underlain by consolidated rocks like Archaean Gneissic complex, Granite pluton Quartzite, Intrusives and with small patches of weathered/fractured sandstone/shale (Jaintia group) in the southern part of the district. North western part of the district has conglomerate and sandstone of upper cretaceous Khasi Group of rocks which is still unexplored. The aquifer system exists mainly in Granitic plutons, quartzites, Archaean Gneissic complex and the intrusives. It also exists in both weathered formation as well as fractured system down to the maximum explored depth of 247.6 m bgl. The depth of weathered zone varies from 1.5 to 10.74 m below ground level. Thus, hydrogeologically, the study area can be categorized into three groups i.e. (i) Granitic gneissic complex aquifer of Archaean (ii) Quartzite aquifer of Shillong Group iii) Khasi Greenstone of Proterozoic age. The aquifer system in these hard rock terrains is a complex one. Number, depth and thickness of fractures were observed not only in different geological formations but also in same geological formation. In figs 3.8 to fig. 3.12, disposition of fractures are shown but were not connected because of huge variation in vertical and lateral extension of fractures.

Formation wise geology of the district is as follows:

3.3.1 Granitic gneissic complex: The granite gneissic rocks are exposed in the southern and northern part and in small patches in the central, northern and eastern part of the district. Granitic plutons of Neoproterozoic to early Paleozoic age (Mylliem granite) comprising of weathered and fractured coarse granite and pegmatite with quartz viens can be categorized under this group of aquifer. This group of aquifer has average ground water potential. The occurrence of ground water in this formation is largely controlled either by weathering or by fractures patterns. In fractured rocks, ground water movement mainly takes place along the fracture and their openings. Groundwater in these formations occurs under phreatic conditions in weathered mantle and under semi-confined to confined conditions in the fractured rocks, which is governed by topography and drainage. In this gneissic complex, depth of first aquifer ranges from 6 to 20 m bgl and the second aquifer ranges from 40 to 179 m bgl. Discharge of the exploratory wells ranges from 1.6 to 1.56 m3/hr. Distribution of fractures at various depths and cumulative discharge is tabulated in table 3.1.

Location	Depth	1	Number of fractures encountered				
	drilled	0 to	50 to	100 to	150 to	200 to	(in m³/hr)
	(in m bgl)	50 m	100 m	150 m	200 m	250 m	
Mylliem - 12th	231.95	NA	NA	NA	-	-	1.6
Mile							
Umtyngar	200.05	1	2	2	1	-	1.56

Table 3.1 Location wise details of fracture encountered in Granitic gneissic complex

The above table reveals that in most of the places, 1 to 2 numbers of fractures were encountered within 50 m, 50-100 m and 100-150 m depth.

3.3.2 Quartzite of Shillong Group: The quartzite and phyllites are exposed in the most part of the study area. They belong to shillong group of rocks. Age of this group of rocks is from Paleo to Meso Proterozoic age and they comprises of weathered/fractured quartzite and phyllite. This aquifer sysyem is the most common in the study area and provides average ground water potential. Ground water occurs in the area under watertable conditions in the top weathered quartzite and in semi-confined to confined condition in the interconnected joints and fractures of the underlying hard quartzite. Exploratory bore wells were constructed in this formation within a depth range of 70.0 to 215.80 m bgl. Discharge in the wells ranges from 0.5 to 14.4 m³/hr. Transmissivity ranges from 1.28 m²/day (at Water Resources Department campus, Shillong) to 87 m²/day (at MES, Shillong) under Mylliem block. One artesian wells which is at Lawsohtun was constructed long back ago by CGWB in this terrain under ground water exploration programme. Distribution of fractures at various depth and cumulative discharge is tabulated in table 3.2.
Location	Year of	Depth	1	Number of fractures encountered					
	Drilling	drilled	0 to	50 to	100 to	150 to	200 to	е	
		(in m bgl)	50 m	100 m	150 m	200 m	250 m	(in	
								m³/hr)	
Dymper	1995-96	80.0	1	1	1	2	1	NA	
	1995-96	70.0	3	0	-	-	-	3.79	
Kyanton-U-Mon									
Umlyngka	1995-96	80.0	1	1	-	-	-	9.0	
NEHU	2003-04	100.9	-	-	-	-	-	-	
Thynroit	2003-04	80.0	-	-	-	-	-	0.54	
MES, Shillong	2007-08	108.8	2	2	1	-	-	-	
ASI, Mawpet	2007-08	140.7	1	0	3	-	-	9.3	
Mawdiangdiang	2011-12	200.05	1	0	1	1	-	6.3	
Mawkynrew	2011-12	153.7	0	1	3	-	-	14.4	
Laitkor	2016-17	178.89	0	2	3	-	-	8.08	
Nongpyiur	2016-17	215.8	0	0	2	2	-	3.78	
Shillong, WRD	2016-17	93.13	2	0	-	-	-	1.48	
	2016-17	111.59	2	0	-	-	-	1.41	
Lapalang									
Mawryngknen g	1995-96	59.45	1	-	-	-	-	8.08	
Sohiong	1995-96	64	3	-	-	-	-	5.32	
JNV,		203.56	0	0	0	1		0.0325	
Mawphlang	2016-17								

Table 3.2: Location wise details of fracture encountered in Quartzite

3.3.3 Intrusives/Khasi Greenstone: This aquifer system in the district comprises of dolerites and ultrabasic dykes and sills of Proterozoic age. Ground water occurs in fractures in this aquifers and ground water potential is poor. This aquifer is confined to a very limited arial extent and is mainly found as narrow belt in central-northern part of the district. Exploratory bore wells were constructed in this formation within a depth range of 190.95 to 200.33 m bgl. Discharge in the wells ranges from 3.7 to 13 m³/hr. Transmissivity ranges from 1.46 m²/day (at Mawiong) to 18 m²/day (at Laitkor Lumeh) under Mylliem block. Distribution of fractures at various depth and cumulative discharge is tabulated in table 3.3.

Location	Year of	Depth	N	Number of fractures encountered					
	Drilling	drilled	0 to 50	50 to	100 to	150 to	200 to	е	
		(in m	m	100 m	150 m	200 m	250 m	(in	
		bgl)						m³/hr)	
Laitkor		190.95	0	1	1	1	-	6.3	
Lumeh									
Mawlyngad		200.05	1	1	1	1	-	13	
Mawiong		200.33	1	0	0	0	-	3.77	

Table 3.3: Location wise details of fracture encountered in Intrusives

3.3.4 Limestone/ Sandstone: This aquifer system comprises of limestone in which ground water occurs owing to secondary porosity viz. fracture, solution cavity etc. This aquifer is not very common and is confined (as per CGWB exploration till now) to Cherrapunjee Location of Sohra

block. Exploratory bore wells were constructed in this formation within a depth range of 11.59 to 247.6 m bgl. Discharge in the wells ranges from 0.55 to 2.1 m³/hr. The Distribution of fractures at various depth and cumulative discharge is tabulated in table 3.4.

Location	Year of	Depth	Num	Number of fractures encountered					
	Drilling	drilled	0 to 50	50 to	100 to	150	200 to	(in m³/hr)	
		(in m	m	100	150 m	to	250 m		
		bgl)		m		200			
						m			
Mamluh	1995-96	190.95	0	1	1	1	-	NA	
Mawsmai -	2003-04	200.05	1	1	1	1	-	2.1	
Cherrapunjee									
			1	1	-	-	-	0.55	
Cherrapunjee,	2016-17	111.59							
NIT campus									

 Table 3.4: Location wise details of fracture encountered in Limestone

3.4 Aquifer geometry: The aquifer system in this district can be divided as a two aquifer system viz., first aquifer (shallow) and second aquifer (deeper). Shallow or first aquifer consists of weathered residuum where ground water occurs under water table condition and is mainly developed by construction of dug wells. The second aquifer is the deeper aquifer which tapped the fractured zones. Based on the study of litholog and analysis of depth of construction of dug wells and shallow bore wells, it is found that the first aquifer occur within 2 to 20 m bgl. Ground water in the second aquifer occurs under semi-confined to confined condition in the fractures upto the maximum depth of 247 m bgl.

3.5 Aquifer properties:

Aquifer I: It is the unconfined aquifer where the tapped aquifer zone ranges within 2 to 35 m depth and generally exhibits unconfined nature of the aquifer. Pumping tests in dug wells show specific capacity varies from 0.15253 to 0.347 m³/min/m of drawdown (Slitcher's method).

Aquifer II: This is the deeper aquifer delineated in Quartzite, Gneiss and Granite, Intrusives and limestone which occurs as semi-confined to confined condition. Drilled depth of the exploratory wells ranges from 64.0 to 247.60 m bgl. The number of fractures and depth of encountering fractures varies widely which show the complexity of the hydrogeology of consolidated hard rock formation. The piezometric head ranges from 0.5 to 78.75 m bgl. At JNV, Mawphlang, the static water level measured at the time of completion of drilling is more the 100 m. Through PYT test it is found that transmissivity values vary from 1.28 to 87 m²/day and the storativity ranges from 1.7×10^{-4} to 3.85×10^{-2} . The discharge in these wells ranges from 0.032 to 14.4 m³/hr (72 m³/hr discharge at Mawlyngad).

3.6 Hydrochemistry:

The quality of ground water is as important as that of the quantity. In order to study the chemical quality of ground water in the district, water samples from springs, exploratory bore wells and dug wells were collected during the course of field work. The parameters analyzed are pH, EC, Turbidity, TDS, CO₃, Cl, SO₄, Na, K, HCO₃, NO₃, F, Ca, Mg, TH and Fe. The details of chemical analysis were given in the Annexure 2.

3.6.1 Ground water quality of unconfined aquifer:

A total of 7 ground water samples from dug well were collected during pre-monsoon and postmonsoon studies and the range of concentrations of different chemical constituents present in the ground water samples are given in table 3.5

Sl.No.	Chemical constituents	Rai	nge	Ra	ange		
		(Concentrat	ions in mg/l	(Concentrations ir			
		excep	ot pH)	mg/l except pH)			
		Premo	nsoon	Postmonsoon			
		Min	Max	Min	Max		
1	рН	5.53	7.1	5.2	6.5		
2	E.C. in <i>micro seimens/cm</i> at	82	528	53	489		
	25°C						
3	Turbidity(NTU)	0.1	1.2	NA	NA		
4	TDS	43	282	28.55	275.1		
5	TH	NA	NA	NA	NA		
6	Са	2	70	1.7	47.6		
7	Mg	0	7.2	2.0	24.7		
8	Na	5.5	24.9	5.2	17		
9	к	1.1	17	2.2	45.1		
10	CO ₃	0	0	0	0		
11	HCO₃	20	220	15	60		
12	SO ₄	1.9	6.6	BDL	2.15		
13	NO ₃	0	6.5	0.9	29.3		
14	Fe	BDL	1.3	0	2.3		

Table 3.5: Chemical Quality of water	 samples from 	Dug wells,	East Kh	asi Hills	district
	(2017-18)				

It is deciphered from table 3.5 that water is slightly acidic and except iron, rest of the chemical parameters is within permissible limit for all uses. Out of 7 samples, 2 samples are having Fe concentration of more than 1 mg/l; other 3 samples have Fe conc. of 0.03 to 0.20 mg/l. The EC values, pH values and Fe conc. of water samples collected from dug wells during premonsoon season are shown in fig 3.13 in fig 3.14 in fig. 3.15 respectively.

3.6.2. Ground water quality in deeper aquifer: A total of 3 water samples were collected during exploratory drilling programme. Based on chemical analysis data the range of concentrations of different chemical constituents present in the deeper aquifer samples is given in table 3.5.

(2017-18)							
Sl.No.	Chemical constituents	Range	2				
	(Concentrations in mg/l	Min	Max				
	except pH)						
1	рН	6.44	6.83				
2	E.C. in micromhos/cm	46.6	124.7				
	at 25º C						
3	Turbidity(NTU)	NA	NA				
4	TDS	23.82	67.42				
5	ТН	10	20				
6	Са	4	8				
7	Mg	1.21	3.64				
8	Na	0.88	8.99				
9	К	0.7	7.6				
10	CO ₃	0	0				
11	HCO ₃	10	20				
12	SO ₄	1.69	4.37				
13	NO ₃	0.4	1.4				
14	Fe	BDL	1.15				

Table 3.6: Chemical Quality of Water Samples in	n Deeper Aquifer, East Khasi Hills District
(2017-1)	8)

It can be inferred from table 3.6 that except iron, the other parameters are within the permissible limit. Out of three samples, one sample shows Fe conc. of more than 1 mg/l, 2 samples have Fe

conc. less than 0.3 mg/l. The EC values are shown in fig 3.16, pH values in fig 3.17 and Fe conc. in fig. 3.18.

3.6.3 Water quality of springs: A total of 6 water samples from springs were collected during post-monsoon studies and the range of concentration of different chemical constituents present in the spring samples is shown in table 3.7

	2017-18					
SI.No.		Rai	nge			
	Chemical constituents (Concentrations in mg/I except pH)	Min	Max			
1	рН	4.7	7.4			
2	E.C. in micromhos/cm at 25º C	21.22	212.6			
3	Turbidity(NTU)	NA	NA			
4	TDS	11.94	120.1			
5	ТН	15	45			
6	Са	1.7	20.4			
7	Mg	4.12	13.42			
8	Na	4.16	27.88			
9	К	4.16	27.88			
10	CO ₃	0	0			
11	HCO ₃	15	45			
12	SO ₄	NA	NA			
13	NO ₃	0.7	2.5			
14	Fe	BDL	BDL			

Table 3.7: Chemical Quality of spring water, East Khasi Hills district 2017-18

It can be inferred from table 3.6 that all parameters are within the permissible limit.. The EC values are shown in fig 3.19, pH values in fig 3.20 and Fe conc. in fig. 3.21.

4. Urban Hydrogeology: Greater Shillong, Meghalaya

4.1 Introduction

Shillong is the capital of Meghalaya, one of the smaller states in north-east India. It is also the district headquarters of East Khasi Hills District. Shillong is situated at an altitude of 1,496 m (4,908 ft) above sea level in the centre of the Shillong plateau. Shillong urban agglomerate comprising of Shillong Municipality and 12 suburbs (Census Towns), viz., Shillong Cantonment, Madanryting, Mawlai, Nongthymmai, Pynthorumkhrah, Nongmynsong, Mawpat, Umlyngka, Umpling, Nongkseh and Lawsohtun. The Greater Shillong area falls under Mylliem block, East Khasi Hills district, Meghalaya and covers an area of approximately 61 sq. km. The area lies between north latitudes 25°33'15" to 25°36' 02" and east longitude 91°50'50" to 91°56'17" and falls in the survey of India toposheet No. 78 O/14. Location Map of Greater Shillong is shown in Fig. 4.1. A few reserve forests can be found around and near Shillong viz., Riatkhwan, Short Round, Shyrwat, Upper Shillong, Riatlaban & Laitkor. As per 2011 Census, the total population of the urban area is 354,759 as against 267,662 in 1991 indicating a decadal growth of about 24%. The city features a subtropical highland climate with temperature varying from 2° to 25.0° C. Winter usually starts from October and continues up to March. During the months of December and January ground frost in early morning is very common. Summer is rather of short duration followed by monsoons which generally starts from May and continues till September and so. 90% of the total annual rainfall takes place in this season. Rainfall is high in the area with an annual rainfall of about 2400 mm.

4.2 Physiography and Drainage

The area under Greater Shillong forms a part of the Shillong plateau. It is located on a gently undulatory area with steep slopes running in different directions. The master slope runs mainly in south-west to north-east direction. The average height of the area is about 1400-1500 m above msl. The highest point of Shillong is Shillong peak, which is situated at a height of 1960 m above mean sea level. The plateau is dissected by a number of streams into hills and intermontane valleys. One major intermontane valley lies to the north of the city along Wah Umkhrah river in the Polo Ground area.

The main drainage of Shillong is carried by two rivers, namely Wah Umshirpi and Wah Umkhrah, which confluence near Beadon and Bishop Falls to form the Wah Ro Ro river, a tributary to Wah Umium river. These two rivers surround the Shillong town and roughly determine the Municipal limits. The numerous streams in the western and southern parts of the city are tributaries of Wah Umshirpi, whereas streams in northern and eastern parts of the city are tributaries of Wah Umkhrah which starts as Umpling river near Umpling. The drainage pattern of the area is angular to sub-angular, typical of hard rock hilly terrain. The streams are not perennial in nature. The discharge in the streams varies from season to season.

4.3 Soil Type

The soils present in and around Shillong Urban area are <u>Ultisols</u>, colloquially known as "red clay soil". The soils are shallow to moderately deep, loamy, skeletal, fine and excessively drained, with

severe to very severe erosion hazards. Ultisols vary in color from purplish-red, to a blindingly bright reddish-orange, to pale yellowish-orange and even some subdued yellowish-brown tones. They are typically quite acidic, often having a pH of less than 5. The red and yellow colors result from the accumulation of iron oxide (rust) which is highly insoluble in water. Major nutrients, such as calcium and potassium, are typically deficient in Ultisols, which means they generally cannot be used for sedentary agriculture without the aid of lime and other fertilizers such as superphosphate.

4.4 Hydrogeological conditions in Shillong Urban Area

4.4.1 Geology

The area is underlain by Shillong group of rocks consisting of quartzite & phyllites. The base of Shillong Group is marked by conglomerate bed containing cobbles and boulders of earlier rocks, i.e., Archaean crystalline rocks, which formed the basement rocks over which the Shillong Group of rocks were laid down as sedimentary deposits during Pre-Cambrian times and metamorphosed over time. The rocks were intruded by epidiorite rocks known as Khasi greenstone. These metabasic rocks occur mostly as sills being concordant with the formations they intruded.

The surface area is covered by red soil to mixed soil type having thickness ranging from few centimeters to 2 m. The rocks are highly weathered at shallow depth leading to the formation of thick soil cover in the low lying areas & thin veneer of soil layer at higher elevation. This weathered zone is underlain by jointed and fractured quartzite. The distribution and disposition of these joints and fractures are of complex nature due to the various tectonic and structural disturbances to which country rocks are subjected to. The depth of this zone varies from 10-60 m below ground level. This is followed by hard massive quartzites, which are generally devoid of prominent structural features. However fracture/jointed rocks are found to occur at greater depths in certain exploratory wells drilled in similar formations in the area. Broadly, there are three sets of lineaments in the area, mainly along ENE–WSW, NW–SE and E–W directions. Lineaments along NE–SW, NNW–SSE and N–S directions are also developed.

4.4.2 Ground Water Scenario

Ground water occurs in the area under water table conditions in the top weathered and fractured zone of quartzite. Further below, semi-confined to confined condition exist in the interconnected joints, fractures etc of the underlying hard quartzite. The weathered quartzites have poor to moderate yields.. The underlying second zone is fissured and jointed which is the zone of saturation. The distribution and disposition of these joints and fractures are of complex nature due to the various tectonic and structural disturbances to which country rocks are subjected to. Groundwater occurs under semi-confined condition in this zone.

Quartzite and recent valley fills (in Polo area) constitute the major aquifer system in the area. Ground water occurs under unconfined condition in the weathered rock and residuum. Ground water development in the urban agglomeration is both by dug wells generally confining to the weathered zone & bore wells, which mainly tap, fractured zone in the hard rocks. These fractures sometime extend very deep occurring even beyond 60mbgl, but otherwise generally close before 60m depth. The hydrogeological map of Greater Shillong is shown in **Fig.4.4**.

As the topography is uneven and the thickness of the weathered horizon varies considerably, open wells are restricted to the Umkhrah valley in polo ground and Pynthorumkhrah area.

Central Ground Water Board has drilled 11 nos. of borewells wells till 2017-18, under Ground water Exploration Programme to identify aquifers present in the area. The litholog studies of the wells drilled by CGWB reveal that the ground water is confined to the fractures of quartzites of shillong group and Mylliem granite under semi-confined to confined condition in urban shillong. These aquifers give poor to average ground water yield potential.

Central Ground Water Board ismonitoring monthly water level from 5 dug wells and 4 borewells. The piezometric head in pre-monsoon season varies from 2.63 m bgl (Lapalang) to 17.2 m bgland during post-monsoon season it varies from 1.97 m bgl to 14.32 m bgl at the same locations respectively. In unconfined aquifer (dug wells), depth to water level varies from 0.95 mbgl (Lower Lachumiere) to 6.97 mbgl (Golf Links) during pre-monsoon 2016-17 and during post-monsoon 2016-17, from 0.84 mbgl to 3.05 mbgl at the same locations respectively. The average seasonal water level fluctuation is about 1 m with minimum fluctuation of 0.09 m at Dhankheti and maximum 3.92m at Golf Links.

Details of borewells drilled by PHE, Shillong and private wells are given in annexure 9(A) and 9(B) repectively

4.4.3 Occurrence of Ground Water as springs

Spring plays a major role for the water requirement of the people in Shillong. They serve as a major source of water supply to drinking water and other uses. Spring discharge is controlled by rainfall, land use, vegetation, and geomorphology of the recharge zone. Geologically, the springs monitored in the study area are of gravity type. During 2017-18 springs study was done as a part of National Aquifer Mapping programme. It has been observed that all the springs monitored shows relatively higher discharge in May-June compared to January-March, which is due to the incidence of high rainfall during April-June. Hence the discharge measured in the month of Jan-Mar has been taken as the discharge in dry period (summer) and in Nov-Dec as wet period (post monsoon). The discharge of the springs, according to urban hydrogeological survey during 2017-18, in dry period varies from 15552 lpd (at Jiengkien) to 51,8400 lpd (at Mawlai) and in wet period from 43200 lpd (at Jiengkien) to 691200 lpd (at Mawlai). Looking at the hydrogeological behavior of these springs it can be inferred that each spring has its own character, which is influenced by a combination of factors, operated in the recharge zone. Map Showing Urban components of Shillong and hydrogeological data of Urban Shillong are shown in Fig.4.1. Fig 4.2 shows the location of springs and dugwells monitored by CGWB in Urban shilling. Fig 4.3 shows the location of tubewells drilled by CGWB, PHE and private tubewells in Urban shillong.

4.5 GROUNDWATER RESOURCES – GREATER SHILLONG

Dynamic Groundwater Resources of Greater Shillong area has been estimated based on the methodology recommended by Groundwater Estimation Committee (GEC'97). The resources computed for the groundwater year 2017-18. Shillong urban agglomerate area is 61 sq.km. but for groundwater resource estimation an area of 180 sq.km.was considered. Out of this area, recharge worthy area is 158 sq.km. The area is underlain mostly by Quartzite and Khasi Greenstone intrusive.

4.5.1 Groundwater Recharge: The rainfall infiltration factor (RRF) recommended by GEC'97 for Granitic- Gneissic complex and Quartzite are 5%. During fieldworks 5 nos. of Infiltration studies were carried out. Rainfall recharge factor (RRF) calculated from these studies show that average RRF is 3%.

Recharge from Rainfall has been computed separately for monsoon and nonmonsoon periods by using water level fluctuation method (WLFM) as well as Rainfall Infiltration Factor method.

Total recharge to groundwater has several components but for greater Shillong only rainfall recharge has been estimated due to paucity of data. Recharge from rainfall during monsoon season is 761 ham while during non-monsoon it is 355 ham. Comparison of monsoon & non-monsoon rainfall recharge shows that monsoon recharge accounts for 68% of the total recharge.

4.5.2 Groundwater Extraction: Groundwater draft for domestic use has been estimated based on number of households using groundwater (Census 2011 data) and number of tube wells used by PHED to supply water and on number of structures used in different industrial units. Unit draft of bore wells used by private parties is 0.18 ham/yr and Unit draft of bore wells used by PHED is 2.54 ham/yr. Groundwater draft for irrigation is nil. It was found that groundwater draft for all uses is 122.72 ham.

4.5.2 Stage of Groundwater Development & Categorization of the Blocks: The area falls under "SAFE" category. The stage of development is 16.63%. Summary of groundwater resources, stages of development and categorization are given in annexure 11.

4.6 Hydrochemistry

The water quality analysis results of some of the samples collected in Greater Shillong area are given in Table 4.1.

S. N	Location In	Source	nU	EC	C03	HCO	CI	Ca	Ma	тц	Ea
υ.	Sinnong	Source	рп	EU	005	3	U	Ca	wig	п	ге
1	Laitkor	Spring	5.53	91.84	0	15	21.2	5.10	8.25	46.7	0.01
2	Mawlai	Spring	4.70	212.6	0	15	42.5	13.6	13.4	89.3	0.15
3	Lr.Lachaumier	Dugwell	5.56	217.3	0	35	10.6	18	6.06	70	0.05
4	Mawpat	Dugwell	5.99	295.7	0	115	53.1	34	3.64	100	0.2
5	Nongmynsong	Dugwell	5.63	362.7	0	35	24.8	34	4.85	105	0.14
6	Dhankheti	Dugwell	6.01	210.4	0	70	21.2	24	4.85	80	1.49
7	Golf Links	Dugwell	5.25	57.7	0	25	14.1	2	3.64	20	2.31
8	Nongpyiur	Borewell	6.83	62.03	0	10	14.1	6	1.21	20	0.17
9	Laitkor	Borewell	6.63	46.6	0	20	24.8	4	3.64	25	0.23

 Table 4.1: Details of chemical analysis results of ground water samples (2016-17)

Source: CGWB (All Units are in mg/l except E.C., which is expressed in at microsiemens/cm at 25°C)

A perusal of the above chemical data indicates that groundwater around the area of investigation is slightly acidic to alkaline with pH values ranging from 4.7 to 6.83. The electrical conductivity values vary from 46 to 362 microsiemens/cm at 25°C indicating that the water is potable. The carbonate content is nil. Total hardness (Ca+Mg) expressed as CaCO₃ in ppm is small indicating that the water is soft in quality. The other chemical constituents of ground water namely HCO₃, Cl, Ca, Mg, etc. all are within permissible limit according to Bureau of Indian Standard (IS: 10500-91). The iron concentration in ground water varies from 0.01 to 2.31 ppm. The highest iron content of 2.31 ppm is observed in dug wells while lowest occur in spring water. The iron content is moderately high. Thus it can be concluded that the ground water in the area is generally good except for iron and potable which can be used for domestic and industrial use. The water is expected to contain chemical constituents within the permissible limits. Details of chemical analyses of water from private borewells and wells drilled by PHE are given in Annexure 2(B) and Annexure 2(C) respectively. Chemical analyses results by PHE also depict the problem of high concentration of iron and slightly acidic water in few areas.

4.7 Major Ground Water Related Problems

The physiography of the rugged hilly terrain restricts development of groundwater. Many areas are unapproachable for truck-mounted rigs and there is need for In-well Drilling Rigs. Fig 4.3 depicts concentration of tubewell constructed in some pockets. These well fields may create problem in near future. Hence, state water policy on construction of bore well /tube well is a need of the time.

Ground water in the area is generally good and suitable for drinking, domestic and industrial use. However, concentrations of greater than 1 mg/litre iron in ground water in some pockets have been reported to occur in Greater Shillong. The presence of iron in drinking water supplies is objectionable for a number of reasons unrelated to health. Under the pH conditions existing in drinking-water supplies, ferrous salts are unstable and precipitate as insoluble ferric hydroxide, which settles out as a rust coloured silt. Such water often tastes unpalatable and stains laundry and plumbing fixtures.

4.8 Ground Water Development Strategy

Apart from constructing bore well for water supply, there is ample scope for the construction of large diameter open wells in a few selected intermontane valleys of Greater Shillong area, which can considerably help in augmenting the water supply system. The favourable areas are as follows-

- 1. In the linear valley on the eastern side of the meter factory of MESB, marked in **Fig. 4.4** as A.
- 2. In the linear valley on the eastern side of the Sacred Church Convent in Mawlai area marked in **Fig. 4.4** as C.
- 3. In the small valley adjacent to and NNW of Bara Bazar, south of District Council Office, at the junction of G.S. Road and Cantonment road, marked in **Fig. 4.4** as F.
- A broad valley on the southern side of NH-40 near Fire brigade ground, marked in Fig. 4.4 as H.
- 5. The main Polo river valley, marked in **Fig. 4.4** as M.

6. Broad flat valley of Wah Yblam river between CPRS and Government Agriculture Farm. The valley extends for about a km and has an average width of about 100 m, marked in **Fig. 4.4** as L.

Though ground water has the possibility to further augment the drinking water supply of the city, conjunctive use of surface and ground water sources is highly recommended. For better utilization of the surface sources like springs, streams, it is recommended that effort should be make to tap the springs right at the source of emergence and water be conducted through large diameter pipes to avoid pollution and other losses. Groundwater development may be regulated by permitting development only in needy areas and new colonies. Further, rainwater harvesting techniques should be universally educated and brought to practice with immediate effect.

5. GROUNDWATER RESOURCES –EAST KHASI HILLS DISTRICT

Dynamic Groundwater Resources of East Khasi Hills district has been estimated based on the methodology recommended by Groundwater Estimation Committee (GEC'97). The resources computed for the groundwater year 2017-18. In the present resource estimation, the smallest administrative unit considered for resource estimation is district since block-wise data is not available. The following sub-units are recommended for the computation of various figures in the methodology and these are considered in details below:

Hilly Area: Area with more than 20% slope has been excluded for the recharge computation. As per NESAC, total recharge worthy area in the district is 894 sq. km.

Poor Groundwater Quality Area: In the district, there is no mappable area, which can be demarcated as poor groundwater quality and hence not considered.

Command and Non-Command Area: The methodology envisages computation of various figures separately for command & non-command area. In the district, there is no major or medium canal irrigation scheme and thus the entire rechargeable area has been considered as a non-command area.

Lithological sub-units: The entire district is underlain by consolidated rocks like Archaean Gneissic complex, Granite pluton, Qartzite, Khasi Greenstone intrusive and limestone/sandstone. Different units considered for computation of recharge are Granitic-Gneissic complex, Quartzites, valley fills and alluvium.

5.1 Groundwater Resources – Recharge for Various Seasons: The rainfall infiltration factor recommended by GEC'97 for Granitic- Gneissic complex and Quartzites are 0.05, for alluvium it is 0.20. During fieldworks 22 nos. of Infiltration studies were carried out, mostly in area underlain by Tertiary sediments and Quartzites. Rainfall recharge factor (RRF) calculated from these studies show that average RRF is 3%.

For calculating recharge from return flow from irrigation, an average water requirement of 1.5 m & 0.1 m for paddy & non-paddy has been considered (as per discussion with Agriculture department, Govt. of Meghalaya). Computation factor for return flow from surface water irrigation is taken as 0.30 - 0.50 as per GEC'97 methodology. Return flow from surface water irrigation has not been considered for monsoon season because aquifers remains fully saturated during the periods of intensive rainfall, additional recharge from ponds & tanks during this period is negligible. Recharge from ponds and tanks during non-monsoon period are considered for 100 days.

Recharge from Rainfall has been computed separately for monsoon and non-monsoon periods for the entire district. The recharge from rainfall during monsoon season has not been computed using water level fluctuation method (WLFM) as Ground Water Monitoring Wells (GWMW) in the district is very few.

Recharge from All Sources: Total recharge to groundwater has several components, rainfall being the major one. The other components include seepage from canals, return flow from surface water irrigation, return flow from groundwater irrigation, seepage

from tanks/ ponds etc. Recharge from various sources has been calculated for monsoon as well as non-monsoon periods and details have been shown in table 4.1.

District	Recharge	Return Flow from	Return Flow	Recharge	Total	Total
	from	Surface water	from	from ponds	recharge	Annual
	Rainfall	Irrigation	Groundwater	& tanks	from other	Recharge
			Irrigation		sources	
East Khasi	10425	206	0	1	207	10632
Hills						

 Table 5.1: Recharge from various sources (ham).

Recharge from rainfall in the district is 10425.30 ham. Comparison of monsoon & nonmonsoon rainfall recharge shows that monsoon recharge accounts for 67%. In comparison to recharge from rainfall, recharge from sources other than rainfall shows that the later accounts for about than 2 % of the total recharge.

5.2 Groundwater Extraction for Various Purposes: Groundwater extraction for domestic use has been estimated based on number of households using groundwater (Census 2011 data) and number of tube wells used by PHED to supply water and on number of structures used in different industrial units. Unit draft of bore wells used by private parties is 0.11 ham/yr and Unit draft of bore wells used by PHED is 2.46 ham/yr. Groundwater extraction for irrigation is nil. It was found that groundwater extraction for all uses in the district is 235 ham.

5.3 Stage of Groundwater Development & Categorization of the Blocks: The district falls under "SAFE" category. The stage of development is 2.45%. Summary of groundwater resources, stages of development and categorization are given in annexure 10.

6. GROUND WATER RELATED ISSUES

There are two major ground water related issues found in the study area.

6.1 Low stage of ground water development: As per ground water resource estimation 2017-18, the stage of ground water development is just 2.45 % and there is no utilization of ground water for irrigation in this area. All the irrigation schemes in the district are dependent upon the surface water resources. Therefore, there is enough scope for future development of ground water in the study area to bring more area under irrigation practice. At present the irrigation practice by utilising ground water (constructing bore well) is not accepted by villagers due to small land holding, high cost for construction and running of a well compared to production outcome. Another major obstacle in accelerating ground water irrigation is the absence of power lines in most of the cultivated/cultivable area.

6.2 Ground water quality: As per water quality analysis data, it is found that there is a moderately high concentration of iron in both shallow aquifer and deeper aquifer. The comparison of iron content in shallow and deeper aquifer shows that there is more concentration of iron in deeper aquifer which needs to be filtered before using it. Apart from iron, the other parameters are within the permissible limit.

7. MANAGEMENT STRATEGIES

As per dynamic ground water resource estimation of East Khasi Hills for 2017-18, net ground water availability is 9569 ham and stage of development is only 2.45 %. The district is having balance net ground water availability for future irrigation use in the tune of 8450 ham. If an irrigation plan is made to develop 60% of the balance dynamic ground water resources available, then 5070 ham of groundwater resources is available in the district for the future irrigation uses. From this available resource (planned for future development) about 5,280 nos. of shallow tube wells (considering a unit draft of 0.96 ham/year) can be constructed. Therefore, there is enough scope for future development of ground water in the study area to bring more area under irrigation practice.

Present land under irrigation during kharif season is 4679 ha, during Rabi season it is 3435 ha. Present minor irrigation schemes are using surface water sources only. Present irrigation from ground water sources is almost nil. Hence, there is ample scope for ground water development for irrigation purpose which will bring prosperity to the society and help the district in achieving self-reliance on food grain. To use the groundwater for irrigation purpose a cropping plan has been designed for the district by using CROPWAT model developed by FAO. A suitable cropping plan for the district was prepared in consultation with Water Management Division of ICAR, Umiam. Cropping pattern data for the district is presented in Table 7.1.

During 2015-16, net sown area in the district is 37,866 ha and cropping intensity is 130%. The net sown area included field crops as well as horticulture and plantation crops cultivated on hills and their slopes. Cropping intensity is calculated generally from field crops, which are of short duration whereas horticulture (like citrus, banana and pineapple) and plantation crops like spices are long duration crops. Again crops grown on the hills like orange, turmeric and ginger are having negligible or nil irrigation requirements. During kharif season, paddy is cultivated in 5435 ha and land under potato cultivation is 3524 ha. After Kharif crops, potato are cultivated in 8224 ha but major portion of paddy cultivated area remains fallow during Rabi season. The intention of this plan is to utilize this paddy fallow land (kharif/ winter paddy area is 5435 ha and rabi paddy area is 261 ha) of about 5175 ha under assured irrigation during Rabi season which will help to increase gross cropped area to 10350 ha and thereby increase cropping intensity up to 200%. In rice fallow, potato, mustard and rabi vegetables can be grown with the support of irrigation. Present cropping pattern, proposed cropping pattern, targeted increase in cropping intensity were shown in Table 7.2a and 7.2b.

Crop-wise and month-wise irrigation water requirement (Precipitation deficit) has been estimated from CROPWAT after giving necessary meteorological, soil, crop plan inputs and the same has been shown in Table 7.1. Cropping pattern, proposed cropping pattern, intended cropping intensity, East Khasi Hills district, proposed cropping pattern with water deficit months and IWR, East Khasi Hills district Crop-wise and month-wise precipitation deficit (mm) using CROPWAT 8 for East Khasi Hills District has been presented in Table 7.2(a), 7.2(b) and 7.3 respectively. Crop-wise and month-wise Irrigation water requirement in ham has been further calculated in Table 7.4 $\,$.

CROPPING PATTERN DATA (File: C:\ProgramData\CROPWAT\data\sessions\EKH.PAT)						
crop	ping pattern name: EKH					
			Planting	Harvest	Area	
No.	Crop file	Crop name	date	date	-8	
1	Data\CROPWAT\data	Rice	04/06	01/10	12	
2	Data\CROPWAT\data	Rice	11/06	08/10	13	
3	Data\CROPWAT\data	Rice	25/06	22/10	12	
4	Data\CROPWAT\data	Rice	02/07	29/10	13	
5	\CROPWAT\data\cro	Potato	25/11	03/04	13	
6	rape mustard.CRO	Mustard	15/10	26/02	12	
7	CROPWAT\data\crop	Small Vegetables	05/02	10/05	13	
8	CROFWAT\data\crop	Small Vegetables	15/02	20/05	12	

Source: CROPWAT

Table 7.2 a. Cropping pattern, proposed cropping pattern, intended cropping intensity,East Khasi Hills district.

Cropping pattern				
Rice based cropping pattern				
 Rice-Potato Rice-Mustard Rice-Vegetables 	Present Cultivated area (ha)	Area to be cultivated (%)	Area to be cultivated (ha)	Irrigation requirement (ham)
	1	2	3(= % of 1)	4
Rice (main crop)	5175	5175		434
Potato (main crop)	0	1294	25	104
Mustard	0	1294	25	65
Vegetables	0	2587	50	115
Net cultivated area	5175	5175		
Gross cultivated area (1+potato/+mustard/+Veg)	5175	10350		
Total irrigation requirement				718
Cropping intensity	100% (Present)	200% (Intended)		

Table 7.2 b. Proposed cropping pattern with water deficit months and IWR, East KhasiHills district

Rice Based Cropping Pattern										
Crop	Growing period (Months)	Periods/months of water deficit	Irrigation requirement							
			(ha m)							
Rice	4	1 - 2	434							
Potato	5	5	104							
Mustard	5	4	65							
Vegetables	3	3	115							
Total			718							

The total area of rice cultivation is comprised of (5175 ha) 50 % of the targeted cultivated area of (10350 ha). During kharif season, rice is cultivated from June to mid-July. Since this huge area cannot be cultivated in a single day (one planting date), so it is considered/ planned to cultivate rice in four stages during this period.

It is planned to utilize rice fallow of 5175 ha for the cultivation of potato, mustard and vegetables. It is considered to cultivate potato and mustard in 1294 ha each and vegetable in 2587 ha, including present cultivation area for these crops. Area under vegetable cultivation is also considered/ planned to cultivate in two stages during this period.

The peak water requirement for irrigation for rice is in the month of June, for potato it is in the month of February, for mustard it is in the month of December and for vegetables it is during March.

Crops	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	•		•	Precipitat	ion deficit (r	nm)				•		
1. Rice	0	0	0	0	147	60.8	0	0	0	2.4	0	0
2. Rice	0	0	0	0	49.3	98	0	0	0	0	0	0
3. Rice	0	0	0	0	0	146.9	0	0	0	4.4	0	0
4. Rice	0	0	0	0	0	164	0	0	0	0	0	0
5. Potato	38.2	49.4	44.9	0	0	0	0	0	0	0	3.3	18.1
6. Mustard	31.2	19.8	0	0	0	0	0	0	0	0	20.4	33.4
7. Small Vegetables	0	24.3	44.1	30.1	0	0	0	0	0	0	0	0
8. Small Vegetables	0	13.6	35.5	30.1	0	0	0	0	0	0	0	0

Table 7.3: Crop-wise and month-wise precipitation deficit (mm) using CROPWAT 8 for East Khasi Hills District.

Table 7.4: Irrigation water requirement (ham) of East Khasi Hills District.

Crops	% of total area of 5175 ha	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
				Precipita	ation def	icit (ham	l 1)							
1. Rice	12	0.00	0.00	0.00	0.00	91.29	37.76	0	0	0	1.49	0.00	0.00	130.53
2. Rice	13	0.00	0.00	0.00	0.00	33.17	65.93	0	0	0	0.00	0.00	0.00	99.10
3. Rice	12	0.00	0.00	0.00	0.00	0.00	91.22	0	0	0	2.73	0.00	0.00	93.96
4. Rice	13	0.00	0.00	0.00	0.00	0.00	110.33	0	0	0	0.00	0.00	0.00	110.33
5. Potato	13	25.70	33.23	30.21	0.00	0.00	0.00	0	0	0	0.00	2.22	12.18	103.54
6. Mustard	12	19.38	12.30	0.00	0.00	0.00	0.00	0	0	0	0.00	12.67	20.74	65.08
7. Vegetables	13	0.00	16.35	29.67	20.25	0.00	0.00	0	0	0	0.00	0.00	0.00	66.27
8. Vegetables	12	0.00	8.45	22.05	18.69	0.00	0.00	0	0	0	0.00	0.00	0.00	49.18
Total	100	45.07	70.32	81.92	38.94	124.5	305.4	0	0	0	4.22	14.89	32.92	717.98

Under ground water exploration programme, CGWB has constructed 25 bore wells in this area and has established that the aquifer in most part of the district is having low potentiality, having an average discharge of about 8 m^3 /hr but can be sustainably developed and use for irrigation purpose.

The ground water potentiality of the area is low to moderate, especially in the low-lying valley areas which are feasible for sustainable ground water development. Therefore, those areas can be brought under irrigation by developing ground water through bore wells or large diameter dug wells. Pumping tests of a few dug wells in quartzite areas show that specific capacity values vary from 0.15 to 0.35 m³/min/ m of drawdown. This type of dug wells can be used to irrigate about 0.1 ha of land especially under Rabi vegetables. However, majority of the farmers in the district are marginal to small and their average land holding is 0.5ha. To irrigate 0.5 ha land especially for Rabi vegetables (maximum demand of 49 mm/month for March after CROPWAT) 245m³/month water is required (for October to March). Considering 70% of irrigation efficiency the demand will rise to 350 m³/month. This amount of water can be extracted by constructing large diameter dug wells of size 2 to 3 m (dia) x 10 to 15 m (depth). If these dug wells are pumped for 16 – 17 days in a month then unit draft created by such a dug well will be 0.13 ham/yr.

A bore well in the area is expected to yield 8 m³/hr. If such a bore well runs for 10 hrs/day for 120 days, then it will create a draft of 0.96 ham. Bore wells can be designed within a depth of 100m, expected to encounter 2 - 3 fractures. Bore wells can be constructed by using 8^{//} dia. casing pipe down to 30 m.

In considered net sown area of 5175 ha, 1290 nos. of shallow bore wells can be constructed (considering 200 m distance between any two shallow bore well). 1290 nos. of bore wells can extract 1238 ham of water annually.

Annual irrigation water requirement is 718 ham while irrigation water requirement during dry season spanning from October to March it is 249 ham. However, proportionate dynamic groundwater resources available for future irrigation use in 5175 ha in the district are 268 ham. During Rabi season, there is no shortage between irrigation demand and availability but there is a shortage of 450 ham for entire year.

During Rabi season, If 100 nos. of large diameter dug wells are constructed, then 50 to 75 ha land can be brought under assured irrigation. Rest of area i.e., 5100 ha land can be brought under irrigation by constructing bore wells by using 245 ham of groundwater resources, that can be harnessed by constructing 230 bore wells.

Groundwater in the area is infested with iron, therefore before consumption aeration/ filtering/ installation of Iron Removal Plant is necessary.Groundwater from unconfined aquifer is slightly acidic in nature which can be consumed after aeration, treatment with potash alum and even treatment with normal filters at home.

REFERENCES

- i. Central Ground Water Board, Ministry of Water Resources, New Delhi Dynamic Groundwater Resources of India (as on march 2011).
- Central Ground Water Board, Ministry of Water Resources, NER, Guwahati
 Dynamic Groundwater resources of Meghalaya State (as on march 2013)
- iii. Central Ground Water Board, Ministry of Water Resources, NER, Guwahati Meghalaya State report (as on march 2013)
- iv. Central Groundwater Board, Ministry of Water Resources, New Delhi Ground Water Information Booklet of East Khasi Hills District, Meghalaya (2017-18)
- v. Central Groundwater Board, Ministry of Water Resources, New Delhi Manual on Aquifer Mapping
- vi. Directorate of Economics and Statistics, Government of Meghalaya.Statistical Hand Book of Meghalaya, 2016.
- vii. Geological Survey of India, Geology and Mineral Resources of the States of India, MISC. PUB. 30 PT.4 VOL. 2
- viii. Year Book, NER, 2015-16 and 2016-17.
- **Todd, D. K. (1959)** Groundwater hydrology; 4th Ed.; John Willy and Sons Inc.; N.Y.;535

A 1 TT		1 1 4 11 61	11 4 4 1 1		10 I
Annexure I: H	vdrogeologica	l defails of hore w	ells constructed by	V (((+WK in A)	nuifer manning area.
Timesure It II	, ai ogeologica	actually of bole in	chib combil acted b		quiter mapping area.

									Casing	Static Water		Drawd		Specipic			
S.N 0.	Site Name	Latitude	Longitude	Block	District	Toposhe et	AAP Year	Depth drilled	depth(mbgl)	level(m)	Discharg e(m3/hr)	own(m)	Transmissivity (m2/hr)	Capacity (lpm/m)	Storati vitv(S)	Formation/Geol	Agency
1	Site Hume	25°25'08"	91°46'47"	Mylliem	East Khasi	780/15	70 u rear	unicu		,	c(110/111/	,	(,,	(1911)	1119(0)	Drocombrian (Qu	Ageney
	Dymper				Hills		1995-96	80	2.4							artzite	CGWB
2		25°031'30"	91°53'15"	Mylliem	East Khasi	780/14											
	Kyanton-U-Mon				Hills		1995-96	70	8.38	2.35	3.79	2.5				Quartzite	CGWB
3		25°031'47"	92°9'45''	Sohra	East Khasi	780/11											
	Mamluh				HIIIS		1995-96	201.13				1			1	Limestone	CGWB
4	Mawryngkneng	25°033'08"	92°4'02''	Mawryng kneng	East Khasi Hills	83C/2	1995-97	59.45	4.8	5.91	8.08	13.08	7			Quartzite	CGWB
5		25°029′45″	92°42'52"		East Khasi	780/11											
	Sohiong				Hills		1995-97	64	15	1.7	5.32						CGWB
6		25°034'04"	91°51'05"	Mylliem	East Khasi	780/14											
	Umlyngka				Hills		1995-97	80	6.4	3.5	9	40				Quartzite	CGWB
7	Mawsmai - Cherrapunjee	25°014'30"	91°51'05"	Sohra	East Khasi Hills	780/12	2003-4	247.6		49	2.1					Limestone	CGWB
8	Mylliem - 12th	25°028'32″	91°51'05"	Mylliem	East Khasi	780/15											
	Mile				Hills		2003-4	231.95			1.6					Mylliem Granite	CGWB
9		25°036′26″	91°51'05"	Mylliem	East Khasi	780/14											
	NEHU				HIIIS		2003-4	100.9								Quartzite	CGWB
10		25°029′52″	91°51'05''	Mylliem	East Khasi Hills	780/15											
11	Thynroit	25°024'02"	01°E1'0E"	Mulliom	Fact Khasi	790/14	2003-4	80	20	1.95	0.54	24.1				Quartzite	CGWB
11		25 054 02	91 51 05	wymenn	Hills	/60/14											
																Quartzite with Pegmatite Khasi	
	MES, Shillong						2007-08	108.8	13.3	8.2		2.4	87			grrenstone	CGWB
12		25°033′08″	91°51'05"		East Khasi	780/14											
	ASI, Mawpet				Hills		2007-08	140.7	13.3	23.8	9.3	15.1	3			Quartzite	CGWB
13		25°027′50″	91°51'05"	Mylliem	East Khasi												
	Umtyngar						2011-12	200.05	22.4	14.15	1.56					Mylliem Granite	CGWB
14	Mawdiangdiang	25°035′50″	91-51.05"	wylliem	East Khasi Hills		2011-12	200.05	14.4	78,75	6.3					Fr. Quartzite	CGWB
15		25°026'00"	91°59'58''	1	East Khasi		2011 12	200.05	17.7	, 5.75	0.5					Fr. Quartzite, Fr.	
				Mawkynr	Hills											Dolerite	
	Mawkynrew			ew			2011-12	153.7	20.5	8	14.4						CGWB

16		25°031'23"	91°55'34"		East Khasi Hills						72				Fr. Quartzite,	
	Mawlyngad						2011-12	200.05	13	0.5		20.01	3		Phyllite	CGWB
17	LaitkorLumeh	25°032'27"	91°53'03"	Mylliem	East Khasi Hills		2011-12	190.95	7.95	28.1	6.3	5.56	18		Quartzite, Khasi Grenstone	CGWB
18	Mawlyngad	25°31'23.1 9"	91°56'55.34 ''		East Khasi Hills			200.05		0.52	13		3		Quartzite, Khasi Grenstone	CGWB
19	Laitkor	25°32'14.3 ″	91°53'33"	Mylliem	East Khasi Hills	780/14	2016-17	178.89	7.5	35.75	8.08	3.55	25.49	3.85x1 0 ⁻²	Quartzite	CGWB
20	Nongpyiur	25°32'31.2 ″	91°49'25"	Mylliem	East Khasi Hills	780/14	2016-17	215.8	12.15	42.67	3.78	13.66	4.68	3.3 x 10-3	Quartzite	CGWB
21		25°27'20.6 ″	91°58'10"	Mawphla ng	East Khasi Hills		2016 17	203.56	12.15	More than	0.0325				Quartzite	COMP
22	JNV , Wawplang	25°22'56 2	01°E2'46 2"	Mulliom	East Khasi	790/14	2016-17	02.12	12.15	100m	1 / 0	25.21	1 20	17.	Quartzita	CGWB
22	Shillong, WRD	23 33 30.3 "	91 33 40.3	wiyineni	Hills	780/14	2016-17	93.13	10.07	1.55	1.40	25.51	1.20	1.7 X 10-4	Quartzite	CGWB
23	Mawiong	25°37'43.1 ″	91°53'12.4''	Mylliem	East Khasi Hills	780/14	2016-17	200.33	25.46	16.83	3.77	25.05	1.46		Khasi Greenstone	CGWB
24	Lapalang	25° 33'56.3"	91°53'46.3''	Mylliem	East Khasi Hills	780/14	2016-17	111.59	25.5	5.2	1.41				Quartzite	CGWB
25	Cherrapunjee, NIT campus	25°15′01″	91°44'39"	Sohra	East Khasi Hills	780/12		111.59			0.55				Limestone and sandstone	
									6.5	16						CGWB

Village/ Location	Taluka/ Block	District	Lat	Long	Aquifer Type	рН	EC (µs/cm 25C) TDS (mg/l)		CO₃ (mg/ L)	HCO₃ (mg/ L)	TA (as CaCO3)	CI- (mg/L)	NO3-1 (mg/L)	F· (m;) L)	g/ C) (m	Ca+2 ng/L)	Mg+2 (mg/ L)	TH (as CaC O3)	Na (mg/L)	K (mg/ L)	Fe (mg/L)
								SPF	RINGS	6												
Laitkor	Mylliem	East Khasi Hills	25°32'34.6"	91°54'10.3"	I	5.53	91.84	4 51.7	79	0	15	15	21.27	2.	5 0.	07	5.10	8.25	46.78	8.83	5.04	0.0145
Mawlai	Mylliem	East Khasi Hills	25°36'04.4"	91°53'26.4"	I	4.70	212.6	5 120	.1	0	15	15	42.54		0 0.	02	13.61	13.42	89.32	27.88	5.54	0.1579
Laitlynkgot	Pynursla	East Khasi Hills	25°26'40.4"	91°50'30.3"	1	5.85	111.	5 62.9	99	0	35	35	21.27	1.	2 0.	05	20.41	6.19	76.56	7.18	7.87	0.0256
Tyrsad	Mawsynram	East Khasi Hills	25°24'39.0"	91°39'49.1"	I	6.05	11.	5 6.48	34	0	15	15	21.27		0 0.	07	1.70	4.12	21.26 7	5.57	6.9	0.0477
Weloi	Mawsynram	East Khasi Hills	25°21'43.7"	91°36'53.6"	1	5.45	21.22	2 11.9	94	0	25	25	21.27	2.	1 0.	04	1.70	5.16	25.52	5.36	4.35	0
Sohiong	Mawphlang	East Khasi Hills	25°29'49"	91°42'41.8"	1	7.44	79.72	2 45.0)9	0	45	45	17.72	0.7	1 0.	17	6	6.06	40	4.16	5.93	0.3324
Village/ Location	Taluka/ Block	District	Lat	Long	Aquifer Type	рН	EC (μs/ cm) 25C	TDS (I (mg/ g I)	:O 3 m /L)	HCO₃ (mg/L)	TA CaC	Ci (as (m :03) L	- SO4- g/ 2(m) g/L)	NO3 -1 (mg/ L)	F- (mg/ L)	Ca+2 (mg/ L)	Mg+ 2 (mg/ L)	TH (as Ca (CO 3)	Na (mg/L)	K (mg/L)	Fe (mg/L	
						S	HALLOW	AQUIFER	(DUG	i WELL)												
Lr.Lachau miere	Mylliem	East Khasi Hills	25°34'13.6	" 91°53'13.7"	I	5.56	217.3	116.8	0	3	5 3	35 10.6	53 29.12	9.9	0.06	18	6.06	5 70	15.52	1.91	0.05	5
Mawpat	Mylliem	East Khasi Hills	25°35′33.9	" 91°55′08.9"	I	5.99	295.7	157.4	0	11	5 11	15 53	.1 5.94	2	0.12	34	3.64	100	21.74	11.08	0.2	2
Nongmyns ong	Mylliem	East Khasi Hills	25°34'47.9	" 91°54'24.5"	I	5.63	362.7	193.8	0	3	5 3	35 24.8	31 35.88	11	0.08	34	4.85	5 105	5.37	3.47	0.14	ŧ
Shillong Dhankheti	Mylliem	East Khasi Hills	25°31'57.9	″ 91°53′34.4″	I	6.01	210.4	113.7	0	7	0 7	70 21.2	27 13.98	1.4	0.08	24	4.85	5 80	9.59	2.88	1.49	÷
Shillong Golf Links	Mylliem	East Khasi Hills	25°35′12.6	″ 91°53′40.0″	I	5.25	57.7	30.86	0	2	5 2	25 14.:	18 5.021	0.4	0.04	2	3.64	1 20	8.09	3.54	2.31	L
Sohra dug well	Sohra	East Khasi Hills	25°17′02.7	″ 91°43′10.3″	I	5.89	89.03	50.26	5 0	2	5 2	25 17.3	72	3.2	0.07	23.8 1	2.06	68. 5 05	5.2	3.27	0.015	;

Annexure 2(A): Aquifer wise water quality data of Aquifer mapping area

Village/ Location	Taluka / Block	District	Lat	Long	Aquifer Type	Depth	pH	EC (mS/cm)	Turbidity(NTU)	TDS (mg/L)	TH (mg/L)	Ca (mg/ L)	Mg (mg/L)	Na (mg/L)	K (mg/L)	CO ₃ (mg/L)	HCO ₃ (mg/L)	SO4 (mg/L)	NO3 (mg/ L)	Fe (mg/L)
									Deeper Aquif	er										
Nongpyiur	Mylliem	East Khasi Hills	25≌ 32'31.2″	91º49'25"	Fractured quartzite	215.8	6.83	62.03	0.2	32.84	20	6	1.2136	5.16	1.03	0	10	1.99	1.40	0.17
NIT, Cherrapunj ee	Sohra	East Khasi Hills	25º15′01″	91º44'39"	Fractured Limeston e and sandston e	111.59	6.44	124.70	0.2	67.42	25	8	1.2680	0.88	0.77	0	10	4.37	0.40	1.15
Laitkor	Mylliem	East Khasi Hills	25 ⁰ 32'14.3"	91º53'33"	Fractured Quartzite	178.89	6.63	46.6	1	23.82	25	4	3.6408	8.99	7.66	0	20	1.69	0.9	0.23

S.No.	Location	pН	Total Hardness	Iron	Chloride
1	Mawlai Mawroh	7	4	0.1	14.2
2	Mawlai Mawroh	7	4	0.1	14.2
3	Manianglah A	7	16	0.1	17.05
4	Manianglah B	7	16	0.1	17.05
5	Mawpun	6.9	13	0.2	4.6
6	Nonglum	7.1	41	0.1	9.2
7	Mawria	6.8	53.2	0.08	8.3
8	St. Edmunds	7	50	0.12	7.21
9	Nongmynsong	7	21.4	0.08	10
10	Nongmynsong	7.5	26	0.06	12.2
11	Nongmynsong	6.9	32	0.2	4.6
12	Nongmynsong	7.1	33	0.1	8.2
13	Nongmynsong	7.3	33.3	0.04	13.4
14	Nongmynsong	7.2	42.7	0.08	16.1
15	Nongmynsong	6.5	26	0.08	8.3
16	Nongmynsong	6.9	37	0.04	10.2
17	Nongmynsong	6.6	32.5	0.08	7.2
18	Nongmynsong	6.7	33.5	0.06	8.5
19	Mawpat	6.9	22.1	0.16	11.2
20	Mawpat	6.9	18.7	0.2	8.3
21	Mawpat	6.86	19.2	0.2	9.3
22	Mawpat	6.95	19.3	0.09	6.6
23	Mawpat	7.1	20.8	0.04	10
24	Mylliem	6.9	30	0.2	8.5
25	Pynthorbah	7	13.4	0.08	11.3
26	Pynthorbah	6.8	11.6	0.05	7.1
27	Pynthorbah	7.2	12.7	0.1	8.9
28	Pynthorbah	7.1	20	0.08	10.6
29	Pynthorbah	6.9	21.4	0.2	15.1
30	Pynthorbah		31	0.2	4.6
31	Pynthorbah	6.6	35	0.08	8.3
32	Pynthorbah	7	26	0.04	12.2
33	Pynthorbah	6.8	11.2	0.06	7.3
34	Pynthorbah	6.9	42.5	0.07	6.7
35	Pynthorbah	6.75	50	0.1	17.5
36	Pynthorbah	6.8	42.3	0.08	12.3
37	Pynthormukhrah	7	37.1	0.2	14
38	Pynthormukhrah	7.1	41	0.12	18.1
39	Pynthormukhrah	6.9	29.8	0.06	13.2
40	Jingthangbriew	7.2	25.2	0.14	31
41	Jaiaw Laitdom	6.89	20	0.05	21.5
42	Lawjynriew	5.6	3.6	1.76	11.8
43	Lawjynriew	5.7	3.6	2.88	11.8
44	Lawjynriew	5.6	3.6	1.76	11.8
45	Pdeng Shong	5.8	68.4	2.3	50.8
46	Lawsohtun	6.9	10	0.1	9
47	Lawsohtun	6.6	12	0.1	9
48	Lawsohtun	6.8	22	0.8	13
49	Mylliem	6.2	10	0.64	9
50	Umpling	6.75	11.7	0.07	10.5
51	Umpling	6.8	12.8	0.05	17.2
52	Umpling	6.9	20	0.2	18.1
53	Umpling	6.6	26	0.08	9.2
54	Umpling	7	35	0.2	10.5
55	Umpling	6.8	29.8	0.12	7.2
56	Umpling	6.9	40	0.06	10.6

Annexure 2(B): Details of chemical	analysis results of ground	l water samples of	private tubewells in
Urban Shillong and Adjoining area			

57	Umpling	6.75	42.1	0.07	9.2
58	Umshning	6.8	32.2	0.2	4.6
59	Umshning	6.7	32.5	0.15	8.5

(Source: PHE, Shillong)

Annexure 2(C): Details of chemical analysis results of ground water samples of tube wells drilled by PHE in Urban Shillong and Adjoining area

S.No.	Location	pН	Total Hardness	Iron	Chloride
1	Mawlai Mawroh	7	4	0.1	14.2
2	Mawlai Ma wroh	7	4	0.1	14.2
3	Manianglah A	7	16	0.1	17.05
4	Manianglah B	7	16	0.1	17.05
5	Mawpun	6.9	13	0.2	4.6
6	Nonglum	7.1	41	0.1	9.2
7	Mawria	6.8	53.2	0.08	8.3
8	St. Edmunds	7	50	0.12	7.21
9	Nongmynsong	7	21.4	0.08	10
10	Nongmynsong	7.5	26	0.06	12.2
11	Nongmynsong	6.9	32	0.2	4.6
12	Nongmynsong	7.1	33	0.1	8.2
13	Nongmynsong	7.3	33.3	0.04	13.4
14	Nongmynsong	7.2	42.7	0.08	16.1
15	Nongmynsong	65	26	0.08	83
16	Nongmynsong	69	37	0.00	10.2
10	Nongmynsong	6.5	32.5	0.01	7.2
18	Nongmynsong	67	33.5	0.06	8.5
19	Mawnat	69	22.1	0.00	11.2
20	Mawpat	69	18.7	0.10	83
20	Mawpat	6.86	19.7	0.2	93
22	Mawpat	6.00	19.2	0.09	6.6
23	Mawpat	7 1	20.8	0.09	10
23	Mulliem	69	30	0.04	85
25	Pynthorbah	7	13.4	0.08	11.3
26	Pynthorbah	68	11.4	0.05	7 1
20	Pynthorbah	7.2	12.7	0.03	8.9
28	Pynthorbah	7.2	20	0.08	10.6
29	Pynthorbah	69	21.4	0.00	15.0
30	Pynthorbah	0.9	31	0.2	46
31	Pynthorbah	6.6	35	0.08	83
32	Pynthorbah	7	26	0.00	12.2
33	Pynthorbah	68	11.2	0.01	73
34	Pynthorbah	6.9	42.5	0.00	67
35	Pynthorbah	6.75	50	0.07	17.5
36	Pynthorbah	68	42.3	0.08	17.3
30	Pynthormukhrah	0.0	37.1	0.03	12.5
38	Pynthormukhrah	71		0.12	18.1
30	Pynthormukhrah	69	29.8	0.12	13.2
40	lingthanghriew	7.2	25.2	0.00	31
40	Jajaw Laitdom	6.89	20.2	0.14	21.5
42		5.6	3.6	1.76	11.8
42	Lawjymiew	5.0	3.0	2.88	11.0
43	Lawjymiew	5.7	3.0	1.76	11.0
45	Pdeng Shong	5.0	5.0 68 /	2 2	50.8
46	Lawsohtun	5.0	10	2.3	50.8
40	Lawsontun	6.9	10	0.1	9
48	Lawsontun	6.0	12	0.1	9
49	Mylliem	6.0	10	0.8	0
50	Umpling	6.75	10	0.04	10.5
51	Umpling	6.75	11.7	0.07	17.2
52	Umpling	6.0	20	0.05	17.2
54	Omphilig	0.9	20	0.2	10.1

53	Umpling	6.6	26	0.08	9.2
54	Umpling	7	35	0.2	10.5
55	Umpling	6.8	29.8	0.12	7.2
56	Umpling	6.9	40	0.06	10.6
57	Umpling	6.75	42.1	0.07	9.2
58	Umshning	6.8	32.2	0.2	4.6
59	Umshning	6.7	32.5	0.15	8.5

Annexure 3: Water level monitoring data compilation

Name of Village/site	Latitude	Longitude	RL(mamsl)	Total Depth of Pz/Dw	Type(Pz/Dw/Spring)	Aquifer Group	Measuring point(magl)	Agency
			Shal	low aqui	fer			
Cherrapunji	25°17'02.7"	91°43'10.2"	1430	1.55	Dug	Ι	G.L	CGWB
Lr.Lachaumiere	25°34'13.6"	91°53'13.7"	1586	2.65	Dug	Ι	0.9	CGWB
Mawpat	25°35'33.9"	91°55'08.9"	1462	10	Dug	Ι	0.54	CGWB
Nongmynsong	25°34'47.9"	91°54'24.5"	1437	4.45	Dug	Ι	0.52	CGWB
Shillong Dhankheti	25°31'57.9"	91°53'34.4"	1515	3.6	Dug	Ι	0.66	CGWB
Shillong Golf Links	25°35'12.6"	91°53'40.0"	1440	10.74	Dug	Ι	0.75	CGWB
Dangar	25°11'20.8"	91°22'53.1"	19	2.9	Dug	Ι	0.8	CGWB
Shella	25°09'54.0"	91°41'12.6"	51		Dug	Ι	0.9	CGWB

Name of Village/site	Latitude	Longitude	RL(mamsl)	Total Depth of Pz/Dw	Type(Pz/Dw/Spring)	Aquifer Group	Measuring point(magl)	Agency
			Deep	er Aquife	er			
Water Resources Department	25°33'56.3"	91°53'46.3"	1514	90	BW	II	0.5	CGWB
NIT Cherrapunji	25°15'01"	91°44'39"	594	25.5	BW	Π	0.5	CGWB
Nongpyiur	25°32'31.2"	91°49'25"	1772	215.8	BW	II	0.8	CGWB
Laitkor	25°33'44.7"	91°38'21.8"	1514	90	BW	II	0.7	CGWB
Lapalang	25°34'09.6"	91°55'08.3"	1500	111.6	BW	II	0.42	CGWB

Annexure 4 A (1) Details of wells:

S. No.	State	District	Village	Well_No	Well_Type	Lat DMS	Long DMS	MP(m)	Present Status
1	Meghalaya	East Khasi Hills	Balat	78O4B1	Dug Well	25°12'20"	91°24'00"	0.78	Abondened
2	Meghalaya	East Khasi Hills	Mawngap	78O3D1	Dug Well	25°28'35"	91°46'10"	GL	Abandoned
3	Meghalaya	East Khasi Hills	Shillong Polo	78O2D1	Dug Well	25°35'00"	91°53'00"	0.85	Abandoned
4	Meghalaya	East Khasi Hills	Rynjah R& R Colony		Dug Well	25°34'39"	91°54'00"	GL	Abandoned
5	Meghalaya	East Khasi Hills	Cherrapunji	78O3C1	Dug Well	25°17'00"	91°43'00"	0.20	Monitoring
6	Meghalaya	East Khasi Hills	Shillong Dhankheti	MLEK08	Dug Well	25°31'57.9"	91°53'34.4"	0.66	Monitoring
7	Meghalaya	East Khasi Hills	Shillong Golf Links	MLEK07	Dug Well	25°35'12.6"	91°53'40.0"	0.75	Monitoring
8	Meghalaya	East Khasi Hills	Lachumeire	MLEK09	Dug Well	25°34'13.6"	91°53'13.7"	0.8	Monitoring
9	Meghalaya	East Khasi Hills	Mawpat	MLEK11	Dug Well	25°35'33.9"	91°55'08.9"	0.54	Monitoring
10	Meghalaya	East Khasi Hills	Nonmyngsong	MLEK12	Dug Well	25°34'47.9"	91°54'24.5"	0.52	Monitoring
11	Meghalaya	East Khasi Hills	Dangar	MLEK13	Dug Well	25°11'20.8"	91°22'53.1"	0.8	Monitoring

Annexure 4 A (2): Dynamic water level data

Location	DTWL (mbgl) March 13	DTWL (mbgl) Aug 13	DTWL (mbgl) Nov 13	DTW L (mbg) Jan 14	DTW L (mbg) Mar 14	DTW L (mbg) Aug 14	DTW L (mbg) Nov 14	DTW L (mbg) Jan 15	DTW L (mbg) Mar 15	DTW L (mbg) Aug 15	DTW L (mbg) Nov 15	DTW L (mbg) Jan 16	DTW L (mbg) Mar1 6	DTW L (mbg) Aug 16	DTW L (mbg) Nov 16	DTW L (mbg) Jan 17	DTW L (mbg) Mar 17	DTW L (mbg) Aug 17	DTW L (mbg) Nov 17	DTW L (mbg) Jan 18	DTW L (mbg) Apr 18
									Shall	ow Aqui	fer	1	r	1	r						
Balat		2.15	3.49	2.42	7.51	2.62	6.53	8.57		2.82				3.7	4.05			Abon	dened		
Mawngap									Α	Abondoned on March, 2013											
Shillong Polo	1.35	0.54	0.64	3.85		1.47		1.25							Sea	led					
Rynjah		Esta	blished in 2	2014		3.9		5.32		3.2	Dry	Dry	NA	NA	4.57			Abon	doned		
Cherrapunji		0.00	0.28	1.59	1.38		0.41	0.54	1.09	-0.20				0.06	0.11	1.45	0.15	GL	GL	0.65	0.2
Shillong Dhankheti	1.8	1.77	1.81	1.35	1.86			1.63		1.19	1.76	1.78	1.74	1.79	1.69	1.77	1.78	1.49	2.53	1.74	3.4
Shillong Golf Links				4.6	7.57			3.73		0.9	2.73	4.03	6.6	2.38	3.05	4.95	6.97	1.65	3.52	4.91	8.1
Lachumeire		0.54	0.78	0.75	1.11	0.45		1.01		0.25	0.75	0.73	0.8	0.7	0.84	0.8	0.95	0.42	1.49	1.05	1.47
Mawpat						6.26		2.4		0.14	0.9	1.4	2.2	0.67	1.43	2.27	3.4	0.16	1.59	3.02	NA
Nonmyngson	son Established in May, 2014 1.44 2.72 0.91 2.79 2.97 2.88 2.53 2.92 3.12 2.84 1.3 2.86								2.86	2.75	3.1										
Dangar	Established in january, 2017									2	2.37	1.1	2.4	1.1	3.2						

	DTWL (mbgl)							
Name of village/site	Nov 16	Jan 17	Mar 17	Aug 17	Nov 17	Jan 18	Apr 18	Remarks
				Deeper Aqui	ifer			
Water Resources					4.00			
Department	1.56	1.97	2.42	0.49	4.22	4.1	8.1	Established in Nov. 2016
NIT Cherrapunji			4.48	5.37	5.64	5.75	6.63	Established in Mar.2017
Nongpyiur			42.49	15.3	23.12	32.75	42.88	Established in Mar.2017
Laitkor		34	43.54	15.5	23.67	32.33	Dry	Established in Jan.2017
Lapalang					6.42	6.81	7.52	Established in Nov. 2017

Sl. No.	State	District	Block	Location	Latitude	Longitude	RL (m)	Type of Spring	Discharge (LPS) June- 2017*	Discharge (LPS) Nov- 2017*	Discharge (LPS) April- 2018*
		East Khasi									
1	Meghalaya	Hills	Mylliem	At Demthring	25°33′30″	91°54'32"	1576	Fracture	0.37	1	
2	Meghalaya	East Khasi Hills	Mylliem	Madanryting	25°33'13"	91°54'54"	1590	Depression	0.5	0.8	
3	Meghalaya	East Khasi Hills	Mylliem	Mawshubuit	25°33'34"	92°55'53"	1634	Depression	1.34	1.56	
4	Meghalaya	East Khasi Hills	Mylliem	At Lapalang	25°33'51"	91°55'2"	1549	Depression	0.5	0.8	<0.5
5	Meghalaya	East Khasi Hills	Mylliem	At Umpling	25°34'26"	91°55'08"	1493	Ş	0.5	1	
6	Meghalaya	East Khasi Hills	Mylliem	Nongmysong	25°35′17″	91°54'48"	1455	Fracture	0.956	0.34	0.5
7	Meghalaya	East Khasi Hills	Mylliem	Mawdiangdiang	25°36′45″	91°56'1"	1316	Fracture	2	2	
8	Meghalaya	East Khasi Hills	Mylliem	Ummawlong	25°36'44"	91°24'52"	1222	Depression	1.1	0.75	
9	Meghalaya	East Khasi Hills	Mylliem	Mawlai	25°36′04"	91°53'26"	1389	Fracture	6	>8	6
10	Meghalaya	East Khasi Hills	Mylliem	Lankyrding	25°35'45″	91°54′32″	1441	Fracture	0.5	1	
11	Meghalaya	East Khasi Hills	Mylliem	At Jiengkieng (Spring Side)	25°33'43"	91°54'07"	1553	Fracture	0.18	0.5	
12	Meghalaya	East Khasi Hills	Laitkor	Laitkor(Ladsaheb)	25°32'34"	91°54'10"	1802	Fracture	0.35	0.5	0.35

Annexure 4 B: Spring discharge monitored in East Khasi Hills district during 2017-18
13	Meghalava	East Khasi Hills	Laitkor	Thangbania	25°32'26"	Q1°53'59"	1813	Fracture	0.35	0.4	0.45
	wieghalaya	East Khasi	Lattkoi	Stream	25 52 20	51 55 55	1015	Tracture	0.55	0.4	0.45
14	Meghalaya	Hills	Mawkynrew	Smit	25°30′1″	91°54'21″	1763	Depression	0.2	0.25	
		East Khasi									
15	Meghalaya	Hills	Mawkynrew	Laitdeingsai	25°28′13″	91°55'13"	1846	?	1.8	2.2	
16	Moghalava	East Khasi	Mawkyprow	Nongthymai	25°27'∕11″	01°59'40"	1650	Fracture	0 157	0.2	
10	Iviegitalaya		Wawkynrew	Nongtryma	25 27 41	91 56 42	1059	FIACLUIE	0.157	0.5	
		East Khasi									
17	Meghalaya	Hills	Mawryngkneng	Umphyrnai	25°31′54″	91°54'48"	1748	Fracture	2.2	3	
		East Khasi									
18	Meghalaya	Hills	Mawryngkneng	Mawryngkneng	25°33′11″	92°03'17"	1308	Fracture	3.34	2	
		East Khasi									
19	Meghalaya	Hills	Mawryngkneng	Umkhen bridge	25°35'37″	92°03′29″	966	Fracture	0.5	0.5	
20	Meghalaya	East Khasi Hills	Mylliem	At Laimer Shiteng	25°35'49″	91°51′16″	1617	Depression	1	1 8	
	Weghalaya	Fast Khasi	wrymenn	At Lanter Shitteng	25 55 45	51 51 10	1017	Depression		1.0	
21	Meghalaya	Hills	Mylliem	Madan Sangmein	25°32'15"	91°50'50"	1809	Fracture	0.28	0.45	1
		East Khasi									
22	Meghalaya	Hills	Mawphlang	Mawkhrie	25°30'02"	91°47′15″	1738	Depression	1	2	2
22		East Khasi			258241461	01842/40%	4770	Democratica	0.424	. 4	
23	iviegnalaya	HIIIS Fast Khasi	iviawphiang	wawmaram	25'31'16"	91 42 49	1//2	Depression	0.434	>4	
24	Meghalaya	Hills	Mawphlang	Sohoing	25°29'49"	91°42′42″	1732	Depression	0.121	0.025	
		East Khasi		_							
25	Meghalaya	Hills	Mawphlang	Mawphlang	25°27'40"	91°45′35″	1815	Depression	0.157	0.5	
		East Khasi									
26	Meghalaya	Hills	Mawphlang	Mawdngung	25°29'06"	91°43′10″	1822	Fracture	0.05	0.12	
27	Meghalaya	East Khasi Hills	Mylliem	Mylliem	25°30'35"	91°48'43"	1669	Depression	<0.02	<0.02	

20	Maghalaya	East Khasi	Sohra	7th Mile Mulliom	2E°21'4E"	01°40'20"	1744	Doprossion	<0.01	<0.01	
20	lviegilaiaya		SUIIIa	7th Mile Myllen	25 51 45	91 49 20	1/44	Depression	<0.01	<0.01	
29	Meghalaya	Hills	Sohra	Umtyngar	25°27'28"	91°49′34″	1714	Fracture	0.05	0.58	dry
		Fast Khasi									
30	Meghalaya	Hills	Sohra	Kyrdemkhla	25°26'17"	91°48'57"	1832	Fracture	1.2	1.8	1
		East Khasi									
31	Meghalaya	Hills	Sohra	Mawkdok	25°25'26"	91°47'30"	1834	Fracture	<0.02	0.21	0.05
		East Khasi									
32	Meghalaya	Hills	Sohra	Dawlieh	25°21'35"	91°44'41"	1696	Fracture	0.25	0.9	
		East Khasi									
33	Meghalaya	Hills	Sohra	Sohrarim	25°20'41"	91°44′17″	1668	Fracture	<0.02	0.05	
		Fast Khasi		Tyrna Mawlong							
34	Meghalava	Hills	Sohra	Road	25°14'20"	91°44′32″	652	Fracture	2	2.4	2.4
		Fast Khasi									
35	Meghalava	Hills	Sohra	Umwaih	25°13'40"	91°41′58″	471	?	1.2	1.67	
	-0 / -	East Khasi								-	
36	Meghalaya	Hills	Sohra	Ringuir	25°12'30"	91°43′34″	578	Fracture	0.75	>4	
		Fast Khasi		Umkaher							
37	Meghalava	Hills	Mawsynram		25°25'1"	91°41′48″	1665	Depression	<0.02	<0.02	
	megnaiaya	Fast Khasi	manoymani	271810118	20 20 1	51 11 10	1005	Depression	.0.02	.0.02	
38	Meghalava	Hills	Mawsynram	Tyrsad	25°24'24"	91°39′34″	1644	Fracture	3.2	>4	
		East Khasi									
39	Meghalaya	Hills	Mawsynram	kyrphie	25°23'28"	91°39'13"	1650	Depression	0.01	0.01	
		East Khasi									
40	Meghalaya	Hills	Mawsynram	Weloi	25°21'43"	91°36′53″	1590	Depression	< 0.01	<0.01	
		East Khasi									
41	Meghalaya	Hills	Mawsynram	Mawsynram	25°18'22"	91°34'56"	1467	Fracture	<0.01	0.5	
		Fast Khasi									
42	Meghalaya	Hills	Mawsynram	Mawkasain	25°15'50"	91°31′11″	1128	Fracture	0.64	0.807	
		East Khasi									
43	Meghalaya	Hills	Mawsynram	Mawsynram	25°17'46"	91°34'42"	1383	Fracture	>4	>6	
	-	East Khasi									
44	Meghalaya	Hills	Mawsynram	Mawpan	25°14'17"	91°26'23"	688	Fracture	0.06	0.67	0.58

45	Meghalaya	East Khasi Hills	Mawsynram	Rangweng	25°14'24"	91°24'57"	623	Fracture	0.3	0.37	
		East Khasi									
46	Meghalaya	Hills	Mawsynram	Umlamgrim	25°14'17"	91°26′23″	1642	Fracture	0.5	1.2	0.05
47	Meghalaya	East Khasi Hills	Pynursla	Laitlynkgot	25°26'40"	91°50'30"	1833	Depression	<0.01	0.01	<0.01
48	Meghalaya	East Khasi Hills	Pynursla	Pomlum	25°24'54"	91°52'04"	1672	Depression	0.5	Locked	0.05
49	Meghalaya	East Khasi Hills	Pynursla	Laitmynreng	25°19'44"	91°53'38"	1447	Fracture	0.01	0.17	
50	Meghalaya	East Khasi Hills	Pynursla	Lankyrdem	25°21'08"	91°53'37"	1534	Fracture	0.04	0.1	
51	Meghalaya	East Khasi Hills	Pynursla	Mawriang	25°12'05"	91°59'42"	375	Fracture	<0.01	<0.01	
52	Meghalaya	East Khasi Hills	Pynursla	Bopumsyiem	25°01'23"	92°01'05"	28	Fracture	0.5	0.67	
53	Meghalaya	East Khasi Hills	Pynursla	Rngain	25°18'31"	92°54′12″	1472	Fracture	0.1	0.75	

Annexure 5: Litholog of exploratory wells

Location	MES Campus, shillong
Taluka/Block	Mylliem
District	East Khasi Hills
Toposheet No	78 O/14
Latitude	25°034'02"
Longitude	91°51'05"
RL (m amsl)	1546
Drilled Depth	108.8
Casing	13.3
SWL (mbgl)	8.2
Discharge (lps)	NA
Date/year	2007-08

Depth	Thickness	
Kange	THICKNESS	
(m)	(m)	Lithological Description
00-4.00	4	Surface soil, loose yellowish brown in color
4.00-	7	Weathered Quartzite
11.00		
11.00-	25	Quartzite, light pink in color, intruded by quartz veins at
36.00		16.70-17.40 m depth
36.00-	16.9	Granite Gneiss, dark grey, containing dark minerals
52.90		
52.90-	21.3	Granite Gneiss, hard, containing mica, feldspar and biotite as
74.20		traces
74.20-	34.6	Granite Gneiss, rich in pyroxene, amphibolite, biotite, pyrite
108.80		etc.,

Location	Laitkor Lumeh
Taluka/Block	Mylliem
District	East Khasi Hills
Toposheet No	78 O/14
Latitude	25°032′27″
Longitude	91°53'03''
RL (m amsl)	1878
Drilled Depth	190.95
Casing	7.95
SWL (mbgl)	28.1
Discharge (m3/hr)	6.3
Date/year	2011-12

	Thickness	Depth range
Lithology	(m)	(m bgl)
Top Soil, Reddish silty	1.85	00 - 1.85
Quartzite, pulverized sample, light yellowish	57.9	1.85 - 59.75
Quartzite, chips of quartzite, grey	27.5	59.75 - 87.25
Quartzite, pulverized, very fine grained sample, grey	6.1	87.25 - 93.35
Quartzite, coarse grained sample with chips of quartzite (3 to 10 mm), fractured, grey	24.4	93.35 - 117.75
Quartzite, medium to fine grained sample, massive, grey	6.1	117.75 - 123.85
Basic rock (?), intrusive body, dark grey in colour	6.1	123.85 - 129.95
Quartzite, coarse grained sample, pink colour	12.2	129.95 - 142.15
Quartzite, very coarse grained sample, light grey	30.5	142.15 - 172.65
Dyke, Khasi Greenstone, massive	3	172.65 - 175.65
Dyke, fractured	3.1	175.65 - 178.75
Dyke, Khasi Greenstone, massive	12.2	178.75 - 190.95

Location	Mawlyngad
Toposheet No	78 O/14
Latitude	25°031'23"
Longitude	91°55'34"
RL (m amsl)	1729
Drilled Depth	200.05
Casing	13
SWL (mbgl)	0.5
Discharge (m3/hr)	72
Date/year	2011-12

Depth range	Thickness	
(m bgl)	(m)	Lithological description
00 - 3.0	3	Top Soil
3.0 - 23.15	20.15	Quartzite, highly weathered, light yellowish.
23.15 - 35.35	12.2	Quartzite, massive, light yellowish
35.35 - 38.45	6.1	Quartzite, partially fractured, light yellowish
38.45 - 75.05	36.6	Quartzite, massive, light yellowish
75.05 - 96.35	21.3	Quartzite, highly massive, light yellowish
96.35 - 114.65	18.3	Quartzite, partially fractured, light yellowish
114.65 - 136.05	21.4	Quartzite, highly massive, light yellowish
136.05 - 148.25	12.2	Phyllite, massive, dark grey.
148.25 - 154.35	6.1	Phyllite, highly massive, dark grey.
154.35 - 178.75	30.5	Phyllite, partially fractured, dark grey.
178.75 - 200.05	21.03	Phyllite, massive, dark grey.
Depth range	Thickness	
(m bgl)	(m)	Lithological description
00 - 03	3	Top Soil
03 - 17.00	14	Quartzite, Highly weathered, Clayey
17.0 - 26.00	9	Green Colored Rock (Quartzite ?), Highly
		fractured, big pieces
26.0 - 32.00	6	Quartz Vein, Smoky colored, Highly fractured
32.0 39.00	7	Dark Grey Quartzite (?), Fractured
39.0 - 82.00	43	Dark Grey Quartzite (?), massive Fractured at
		60.0 – 63.0 m.
82.0 - 88.00	6	Dark Grey Quartzite (?)+ Pink quartzite,
00.0 01.00	20	fractured
88.0 - 94.00	39	Quartzite, Pink, Fractured +Smoky Quartz vein
94.0 - 106.00	12	Quartzite, Pink, massive
106.0 100.00	2	Quartz voin Smoly, to white
100.0 - 109.00	5	Fractured
109.0 112.00	3	Duke
112.0 - 112.00	3	Quartzite Pink massive
112.0 - 113.00	5	Quartzite, Pink, mixed with green chips (2)
121.0 - 124.00	3	Dyke Dark grey massive
121.0 - 124.00	3	Dyke, Dark grey, Highly fractured
127.0 - 130.00	3	Dyke Dark grey nartially fractured (?)
130.0 - 148.60	18.6	Dyke Dark grey massive
148 60 - 153 70	61	Dyke, Dark grey, Highly fractured
1-0.00 - 155.70	0.1	Dyre, Dark grey, mgmy nacureu

Location	Mawkynrew
Taluka/Block	Mawkynrew
Distaist	
District	East Knasi
	Hills
Toposheet No	
Latitude	25°026'00"
Longitude	91°59'58"
RL (m amsl)	1546
Drilled Depth	
_	153.7
Casing (m)	
-	20.5
SWL (mbgl)	8
Discharge	
(m3/hr)	14.4
Date/year	
	2011-12

Location	Mawdiangdiang
Taluka/Block	Mylliem
District	East Khasi Hills
Toposheet	78 O/14
No	
Latitude	25°035'50"
Longitude	91°51'05"
RL (m amsl)	1391
Drilled	
Depth	200.05
Casing(m)	14.4
SWL (mbgl)	78.75
Discharge	
(lps)	6.3
Date/year	2011-12

Depth range	Thickness		
(m bgl)	(m)	Lithological description	
00 - 3.0	3	Top Soil, Weathered quartzite, brick-red	
		colored.	
3.0 - 12.00	9	Highly weathered quartzite, Buff colored.	
12.0 - 15.00	3	Quartzite, highly fractured, grey colored.	
15.0 - 36.00	21	Quartzite, partially weathered, grey colored.	
36.0 - 48.00	12	Quartzite, massive, buff colored.	
48.0 - 60.00	12	Quartzite, massive, smoky colored.	
60.0 - 69.00	9	Quartzite, fractured, grey colored.	
69.0 - 108.00	39	Quartzite, massive, grey colored.	
108.0 -	24	Quartzite, massive, dark grey colored.	
132.00			
132.0 -	6	Weathered & little fractured Quartzite, grey	
138.00		colored.	
138.0 -	21	Quartzite, massive, grey colored.	
159.00			
159.0 -	9	Quartzite, highly fractured, grey colored	
168.00			
168.0 -	12	Quartzite, less fractured, grey colored.	
180.00			
180.0 -	3	Massive Quartzite, grey colored.	
183.00			
183.0 -	17.05	Massive Quartzite, grey colored.	
200.05			

Location	JNV
	Mawphlang
Taluka/Block	Mawphlang
District	East Khasi Hills
Toposheet	
No	
x	0.500.500 (1)
Latitude	25°27′20.6″
Longitudo	01050100
Longitude	91 38 10
RI (m amsl)	1670
itel (in unisi)	10/0
Drilled	203.56
Depth	
Casing	12.15
SWL (mbgl)	More than 100m
Discharge	0.0325
(lps)	
Date/year	2016-17
Location	Laitkor
Taluka/Block	Mylliem
District	East Khasi
	Hills
Toposheet	780/14
No	
Latitude	25°32'14.3"

Depth range (in m bgl)	Thickness (m)	Lithology
G.L. to 28.69 m bgl	28.69	Quartzite, compact, sample cuttings are very fine to fine grained size, grayish white in colour.
28.69 to 53.21 m bgl	24.52	Quartzite, compact (Iron content), sample cuttings are very fine to fine grained size, brownish grey in colour.
53.21 to160.55 m bgl	107.34	Quartzite, compact, sample cuttings are very fine to fine grained size, grayish white in colour.
160.55 to 192 m bgl	31.45	Quartzite, compact, sample cuttings are fine to medium grained size, grayish white in colour.
192 to 192.50 m bgl	0.5	Quartzite, fractured (minor), sample cuttings are medium grained size, grayish white in colour.
192.50 to 203.56 m bgl	11.06	Quartzite, compact, sample cuttings are medium grained size, grayish white in colour.

Depth range (in m bgl)	Thickness (m)	Lithology
G.L. to 13.43 m bgl	13.43	Top Soil, reddish brown in colour.
13.43 to 50.21 m bgl	36.78	Quartzite, compact.
50.21 to 62.47 m bgl	12.26	Quartzite, fracture.

Longitude	91°53'33"
RL (m amsl)	1873
Drilled Depth	178.89
Casing	7.5
SWL (mbgl)	35.75
Discharge (lps)	8.08
Date/year	2016-17

62.47 to 65.47 m bgl	3	Quartzite, compact.
65.47 to 89.99 m bgl	24.52	Quartzite, fracture .
89.99 to 120.64 m bgl	18.66	Quartzite, compact.
120.64 to 139.30 m bgl	18.66	Quartzite, fracture .
139.30 to 142.16 m bgl	2.86	Quartzite, compact.
142.16 to 145.16 m bgl	3	Quartzite, fracture .
145.16 to 178.89 m bgl	33.73	Quartzite, compact.

Location	NIT,
	Cherapunjee
Taluka/Block	Sohra
District	East Khasi
	Hills
Toposheet No	780/12
Latitude	25°15'01"
Longitude	91°44'39"
RL (m amsl)	1873
Drilled Depth	111.59
T .	
Casing	
	65
CW/I (mhal)	16
SWL (mbgi)	10
Discharge (lps)	0.55
Date/year	2016-17

Depth range (in m bgl) G.L. to 2 m bgl	Thickness (m) 2	Lithology Top Soil, reddish brown in colour.
2 to 4 m bgl	2	Sandstone, weathered, sample cuttings are fine grained size, greyish brown in colour.
4 to 22 m bgl	18	Sandstone, compact, sample cuttings are fine grained size, grayish brown in colour.
22 to 22.5 m bgl	0.5	Sandstone, fractrued, sample cuttings are fine grained size, grey in colour.
22.5 to 68.68 m bgl	46.18	Sandstone, compact, sample cuttings are fine to medium grained size, grey in colour.
68.68 to 69.68 m bgl	1	Limestone, fractured (Dry), sample cuttings are fine grained size, grey in colour.
69.68 to 111.59 m bgl	41.91	Limestone, compact, sample cuttings are fine to medium grained size, grey in colour.

Location	Nongpyiur
Taluka/Block	Mylliem
District	East Khasi
	Hills
Toposheet	780/14
No	
Latitude	25°32'31.2"
Longitude	91°49'25"
RL (m amsl)	1766

Depth range	Thickness	
(in m bgl)	(m)	Lithology
G.L. to 4 m bgl	4	Top Soil.
4 to 31.82 m bgl	27.82	Quartzite, weathered, sample cuttings are very fine grained size, brown in colour.
31.82 to 139.03 m bgl	107.21	Quartzite, compact, sample cuttings are very fine grained size, reddish brown in colour.
139.03 to 140.03 m bgl	1	Quartzite, fractured, sample cuttings are fine to medium grained size, reddish brown in colour.
140.03 to 156.42 m bgl	16.39	Quartzite, compact, sample cuttings are medium grained size, greyish brown in colour.

Drilled Depth	215.8
Casing	
	12.15
SWL (mbgl)	42.67
Discharge (lps)	3.78
Date/year	2016-17

156.42 to 157.42 m bgl	1	Quartzite, fractured, sample cuttings are medium grained size, reddish brown in colour.
157.42 to 172.81 m bgl	15.39	Quartzite, compact, sample cuttings are medium grained size, reddish brown in colour.
172.81 to 173.81 m bgl	1	Quartzite, fractured, sample cuttings are medium grained size, reddish brown in colour.
173.81 to 215.54 m bgl	41.73	Quartzite, compact, sample cuttings are medium grained size, reddish brown in colour.

Location	Mawiong
Taluka/Block	Mylliem
District	East Khasi Hills
Toposheet No	78O/14
Latitude	25°37'43.1"
Longitude	91°53'12.4"
RL (m amsl)	1279
Drilled Depth	200.33
Casing	25.46
SWL (mbgl)	16.83
Discharge	3.77
(lps)	
Date/year	2016-17

Depth range	Thickness	
(in m bgl)	(m)	Lithology
G.L. to 13.43 m bgl	13.43	Top Soil, reddish brown in colour.
13.43 to 31.82 m bgl	18.39	Khasi Greenstone, weathered.
31.82 to 37.95 m bgl	6.13	Khasi Greenstone, compact.
37.95 to 40.95 m bgl	3	Khasi Greenstone, fractured.
40.95 to 200.33 m bgl	159.38	Khasi Greenstone, compact.

Location	lapalang
Taluka/Block	Mylliem
District	East Khasi Hills
Toposheet No	780/14
Latitude	25° 33'56.3"
Longitude	91°53'46.3"
RL (m amsl)	1514
Drilled Depth	111.59
Casing	25.5
SWL (mbgl)	5.2
Discharge (m3/hr)	1.41
Date/year	2016-17

Depth range (in m bgl)	Thickness (m)	Lithology
0 to 4	4	Top Soil, reddish brown in colour.
4 to 24.5	20.5	Quartzite, weathered, sample cuttings are very fine grained, brownish grey in colour, loose formation.
24.5 to 27	2.5	Quartzite, compact, sample cuttings are very fine to medium grained, brownish in colour.
27 to 29	2	Quartzite, partially fractured, sample cuttings are medium grained, grey in colour.
29 to 111.59	86.59	Quartzite, friable, sample cuttings are medium to coarse grained, grey in colour. loose formation (leading to collapse of Well)

Location	Water Res	sourc	es							
	Dept. Ca	ampu	us		De	pth range	Th	ickness		
Taluka/Block	Myllie	em			(ii	n m bgl)		(m)	— <u> </u>	Lithology
District	East Khas	si Hil	lills		G. bgl	.L. to 6 m		6	Top Soil, black	kish brown in colour.
Toposheet No	780/	14			6 t bgl	to 10 m		4	Quartzite, we are fine grain colour.	athered, sample cuttings ned size, dark brown in
Latitude	25°33'5	56.3"	"		10 bgl	to 11 m		1	Quartzite, frac medium to co grey in colour.	cture, sample cuttings are parse grained size, light
Longitude	91°53'4	46.3"	3"		11 bgl	to 35 m		24	Quartzite, con fine grained si	pact, sample cuttings are ze, grey in colour.
RL (m amsl)	156	0			35 bgl	to 36 m		1	Quartzite, frac medium to co colour.	tured, sample cuttings are arse grained size, grey in
Drilled Depth	93.1	3			36 bgl	to 77 m		41	Quartzite, com medium graine	npact, sample cuttings are ed size, grey in colour.
Casing	10.0)7			77 m b	to 93.13 ogl	1	16.13	Quartzite, loos collapsing of sample cutting light grey in co	se formation, encountered well after 77 m bgl gs are fine grained size, plour.
SWL (mbgl)	1.55	5							0.0.1	
Discharge (m3/hr)	1.48	8								
Date/year	2016-	-17								
Location	12th Mile Mylliem		DE RAN	EPT [GE [GE	H (M	THICKN (M)	ESS		LITHO	DLOGY
Taluka/Block	Mylliem	_	0.00	to 6	5.25	6.25		Granite, coarse g	Reddish brown	, surface soil, medium to
District	East Khasi Hills		6.1 1	25 to 8.45	o ;	12.2		Granite, fragmer	Reddish brow	n, fine to medium with clase feldspar, quartz
Toposheet No	780/14									
Latitude	25°028'32"		18.45 t 27.55		to ;	9.1		Granite, broken	light grey, me chip of quartz, fe	edium grained with few eldspar & mica
Longitude	91°49'24"		27.55 to		to	33.6		Granite,	grey, fine gra	ined, fragment of mica,
RL (m amsl)	1805	ŀ	6	1.15)	24.4		orthocla	se feldspar, qua	rtz
Drilled	231.95		01. 8	. I D I 5 5 5	to	24.4		broken	dark grey, me	edium grained with few
Casing(m)	231.95	F	85	.55 i	to	23.3		Granite.	dark grev. me	edium to coarse grained
	14		10	8.8	5			with few	v broken chip of	quartz, feldspar & mica
SWL (mbgl)	NA		108 12	8.85 23.2	to 5	14.4		Granite, chip of	pink, coarse g quartz, feldspar	rained with max. broken & mica
Discharge			12	23.2	5	22.3		Granite,	pinkish grey, fi	ne to coarse grained with
(m3/hr)	1.6	Ļ	to1	45.5	55	12		few bro	ken chip of quar	tz, feldspar & mica
Date/year	2004-05		145	.55 :0 5	to 5	13		Granite,	dark grey, me	dium grained with few
		ŀ	158	0.5. 55	5 to	27.6		Granite	grev fine to m	edium grained with few
			18	36.1	5			broken	chip of quartz, fe	eldspar & mica
			186 20	5.15)1.4:	to 5	15.3		Granite, chip of	pink, coarse g quartz, feldspar	rained with max. broken & mica
			201 23	.45 1.9:	to 5	30.5		Granite, few bro	dark grey, fine ken chip of quar	to medium grained with tz, feldspar & mica.
									-	
Location	ASI,	D	epth(r	n)	TÌ	nickness(n	ı) –	Lithology	7	

	Mawblei			
Taluka/Block	Mylliem	0.00-3.50	3.50	surface soil, Quartzite
District	East Khasi			
	Hills	3.50-15.70	12.20	Quartzite, weathered
Toposheet No	78O/14	15.70-21.80	6.10	Quartzite, weathered,
Latitude	25°033'08"			highly fractured
Longitude	91°51'05"	21.80-27.90	6.10	Quartzite
RL (m amsl)	1678	27.80-37.00	9.20	Quartzite, friable
Drilled Depth	140.7	37.00-43.10	6.10	Quartzite, fraible
Casing(m)	13.3	43.10-48.00	4.90	Quartzite, highly fractured
SWL (mbgl)	23.8	48.00-55.30	7.30	Quartzite
Discharge			55.3	0-64.50 9.20
(m3/hr)	9.3	Quartzite, friab	le	
Date/year	2004-05	64.30-79.70	15.40	Quartzite, friable
		79.70-85.80	6.10	Quartzite, friable
		85.80-98.00	12.20	Quartzite, friable
		98.00-110.20	12.20	Quartzite, fraible
		110.20-116.30	6.10	Quartzite, highly fractured
		116.30-122.40	6.10	Quartzite, fraible
		122.40-125.50	3.10	Quartzite, moderately
				fractured
		125.50-140.70	15.20	Quartzite, friable

Location	Thyrnoit
Taluka/Block	Mylliem
District	East Khasi
	Hills
Toposheet No	
Latitude	25°029'52"
Longitude	91°51'05"
RL (m amsl)	1665
Drilled Depth	80
Casing(m)	20
SWL (mbgl)	1.95
Discharge (m3/hr)	0.54
Date/year	

Depth range	Thickness	
(m bgl)	(m)	Lithological description
00 - 2.90	2.901	Top soil, clay.
2.90-18.20	15.3	Clay brown non sticky
18.20-23.95	5.15	Weathered zone of quartzite brown coating, water struck at
		20m
23.35-25.45	2.1	Quartzite, white, soft.
25.45-28.45	3	Quartzite, pink, hard.
28.45-33.55	5.1	Quartzite friable, whit.
33.55-34.55	1	Quartzite, pink.
34.55-40.65	6.1	Quartzite, friable, white.
40.65-43.75	3.1	Quartzite, white, fractured, water less, probably.
45.75-50.85	5.1	Quartzite pink
50.85-53.85	3	Quartzite, white.
53.85-58.95	5.1	Quartzite, pink
58.95-63.05	4.1	Quartzite, white hard
63.05-74.75	11.7	Quartzite, white.

I OCATION	lοα	rati	on	

Umlyngka

ſ

Depth T

Thickness

Taluka/Block	Mylliem
District	East Khasi
	Hills
Toposheet No	780/14
Latitude	25°034'04"
Longitude	91°51'05''
RL (m amsl)	1554
Drilled Depth	
	80
Casing(m)	
	6.4
SWL (mbgl)	
	3.5
Discharge (m3/hr)	9
Date/year	

Range	(m)	
(m bgl)		
		Top Soil, Reddish brown, weathered fine grained
00-4.00	4	surface material,
4.00-6.00	2	Quartzite, Light brown, weathered quartzite gravel
		Amphibolite (Khasi Green Stone), Dark Green,
		weathered, fractured amphibolite, composed mainly
6.00-13.00	7	of hornblende, non –productivefracture
		Amphibolite, Dark green fractured Amphibolite,
130 - 20.00	7	angular fragments. The zone is productive.
		Amphibolite, dark green, massive, sample fresh and
20.00-35.00	15	fine grained.
		Amphibolite, Dark green, fractured amphibolite,
35.00-39.00	4	angular fragments, unproductive zone.
		Amphibolite, Dark green, massive amphibolite, fine
39.00-56.00	17	grained fresh sample.
		Amphibolite, Dark green fractured amphibolite,
		angular fragments. The zone is productive (discharge-
56.00-60.00	4	5300 litre/hour)
60.00-80.00	20	Amphibolite, Dark green massive amphibolite.

Location	Kyanton-U-
	Mon
Taluka/Block	Mylliem
District	East Khasi
	Hills
Toposheet No	780/14
Latitude	25°031'30"
Longitude	91°53'15''
RL (m amsl)	1847
Drilled Depth	70
Casing(m)	8.38
SWL (mbgl)	2.35
Discharge (m3/hr)	3.79
Date/year	1995-96

Depth range	Thickness	
(m bgl)	(m)	Lithological description
00-5.70	5.7	Top soil, weathered zone.
		Boulders of meta-basic rock.
5.7-10.0	4.3	
		Quartzite, weathered, mixed with meta-basic rock
10.0-12.0	2	fragments.
12.0-15.0	3	Meta-basic rock, hard greenish.
15.0-19.0	4	Quartzite, weathered, brownish.
19.0-20.0	1	Meta-basic rock, hard, greenish.
20.0-23.0	3	Quartzite, weathered, brownish.
23.0-28.4	5.4	Quartzite, fresh, partially fractured.
28.4-30.4	2	Quartzite, hard, massive.
30.4-35.5	5.1	Quartzite partially fractured.
35.5-57.0	21.5	Quartzite, hard, massive.
57.0-59.0	2	Quartzite partially fractured, non- productive.

SI.	V	Village	Location	Coordinates	General Geology	Lay	er Res	istivity	in Ohm	i-m	La	yer Tł	nickne	ss in i	neter	S	Tot	Remarks
Ν	ES					ρ1	ρ2	ρ₃	ρ4	ρ5	P 6	h1	h2	h₃	h4	h	al	with
о.	Ν															5	Dep	expected
	о.																th	zones/frac
																	(m)	tures (for
																		recomme
																		nded
																		sites)
1	1	Ladnongkrem	Laitkor Football	N25°31'32",	Shillong Group	210	240	500	-		-	2	6				8	
			Ground	E91°53'8.7"		0	0											
2	2	Ladnongkrem	Near PHE Bore	N25°31'32",	Shillong Group	190	300	100	45	450	-	1	4	4.	9		19	Near
			well in the same	E91°53'8.7"		0		0		0		5		5				existing
			ground															successful
																		PHE tube
																		well
3	3	Ladnongkrem	100m. South of	N25°30'40.2"	Shillong Group	115	150	110	180	400		1	4.	10	15		30.	
			Assam Rifles	,E91°53'13.2"		0		0	0				2	.3	.1		6	
			Construction coy.															
			By the side of the															
			road															
4	4	Ladnongkrem	80m. South of	N25°30'40.2",	Shillong Group	110	210	300	150			2	11	5			18	
			VES 3 and 40m,	E91°53'13.2"		0	0		0									
			East of hut.															
5	5	SMIT	In SMIT Bazar,	N25°29'58.6",	Shillong Group	800	120	300				1	6				7	
			Opp. The house	E91°54'13.5"			0											
			of Sri Nongrum,															
			20m. towards															
			play grounds															
6	6	SMIT	In SMIT Bazar,	N25°29'58.6",	Shillong Group	100	150	300				2	4				6	
			Opp. The house	E91°54'13.5"		0	0											
			of Sri Nongrum,															
			20m. from play															
			grounds															
7	7	Ularulang	1.5 km from VES	N25°31'32",	Shillong Group	220	300	400	50	700		1	3	12	14		30	
			5 in the elevated	E91°53'8.7"		0	0											

Annexure 6: Geophysical data, East Khasi Hills District

			football ground															
8	8	Umphirnai	40m SW of the	N25°31'45",	Shillong Group	933	157	263	762	Vh		1.	8.	15	9.		34.	
			gate	E91°54'00"			8	0	7			6	4	.3	4		7	
9	9	Umphirnai	10m North of the	N25°31'34.7",	Shillong Group	130	100	815	202	315	10	1.	0.	22	21	1	60	
			road, after the	E91°53'44.8"		0		3	50	6	90	3	7	.7	.3	5		
			Hotel															
10	10	Laitkor	Behind the house	N25°31'29.7",	Shillong Group	200	546	864	210	109		1.	10	15	14		41.	
			of Sri Theila	E91°53'31.4"		0	0	5	00	00		7	.2	.5			4	
			Lingdoh Nonglait,															
			20m from the															
			compound wall															
11	11	ARC, Happy	Firing Range-15m	N25°33'06.5",	Shillong Group	220	300	150	600			0.	3	26			30	Zones up
		Valley, Shillong	NE corner of the	E91°55'13.7"			0					5		.5				to 30mbgl
			field engineering															and
			training area															Fractures
			building.															expected
																		between
																		50m and
42	40					400	100	4.40	250	200				-	4.2		10	70mbgl.
12	12	АКС, Нарру	Firing range -	N25'33'06.5",	Shillong Group	400	100	140	350	200		1	1	3	13		18	
		valley, Shillong	35m NW OF VES	E91°55°13.7"			0	0										
12	12		11; Siring Demonstration	NOF822IO4 CIL	Chillen a Casura	250	000	700	100	600		1	4		24		24	
13	13	АКС, Нарру	Firing Range – on	N25'33'04.6",	Shillong Group	250	800	700	100	600		1	1	8	24		34	
		valley, Shillong	the eastern bank	E91°55'.9.8"					0									
			of the hala and															
			opp. western															
1.4	4.4		Corner of the park		Chillen - Carry	100	450	120	200			1		2			0	7
14	14	ARC, Happy	Firing range- 45m	N25"30"05.7",	Shillong Group	100	150	120	300			1	4	3			8	Zones
		valley, shillong	from the bridge	91 55 38.2		0	0											from 8m
			on shivahara hala															t0 C0mhal
			and near the 6															60mbgi.
			pole of the															
			lencing															
			demarcating the															
			civil and defence															
15	15	APC Happy	75m North of VES	N25°20'05 7"	Shillong Group	500	100	70	100			1	4	7			12	
51	12	Vallov Shillong		1123 30 03.7 ,	Sumong Group	500	100	70	100			L L	4	/			12	
	1	valley, stillong	14	E3T 22 29'5	1		U		U									1

16	16	ARC, Happy Valley, Shillong	120m North of VES 15, near the end of river retaining wall		Shillong Group	300	400	200 00			5. 5	1. 5			7	
17	17	Upper Shillong, 4 th mile	In the play ground, Opp. Sunny side, Don- bosco.		Shillong Group	220	700	180 0	600 0		3. 1	0. 9	6		10	
18	18	Upper Shillong,	Opp. Vet. Dispensary (C&RD) & Petrol bunk, 45m N 15°W of the bunk indicator post.	N25°33'12.1", E91°50'43.4"	Shillong Group	120 0	300 0	600 0	800		3. 1	0. 9	16		20	
19	19	Mawklot	Opp. Electric pole of Godown of Sri Sinungklow/Nong thymmai	N25°33'03.3", E91°49'32.9"	Shillong Group	250	950	350	Vh		0. 5	2	25 .5		28	Zones up to 25m
20	20	Myllieum/Baniu m	In the ground, 29m S20° east of electrical transformer.	N25°31'23.2",E91 °48'59.8"	Shillong Group/Granite	100 0	150	60			1	33			34	
21	21	Umtyngar	State trg. Centre, Scouts & Guides, 24m S30°E of main building chimney		Granite	150 0	300 0	900	250 0		1	5	44		50	
22	22	Mawblah- Myllieum	69m N20°Eof NE corner of Hamid Nongbri's Brick works.	N25°31'11.9", E91°48'48.5"	Granite	600	100	999 9			23	7			30	
23	23	Mawblah- Myllieum	50m N30°W of VES-22	N25°31'13.2", E91°48'47.6"	Granite	893	250	120 0	250	vh	1. 4	3. 6	3	22	30	Zones from 10- 30m
24	24	Mawblah- Myllieum	65 m SW of VES- 23	N25°31'12", E91°45'45.9"	Granite	750	350	Vh			1. 4	25 .6			27	
25	25	Mawblah- Myllieum	Due east of sign Board of	N25°31'16.1", E91°48'52.2"	Granite	790	300	700			1	26			27	

			Command area Agriculture Department. At a distance of 58m													
26	26	Marbaniang	50m S70° east of public shed on the main road.	N25°30'50.1", E91°48'42.9″	Shillong Group/ Granite	160	100	700			4	16			20	
27	27	Sengsamla	60m S50° west of Sengsamla bus stop.	N25°30'42.5", E91°48'41.3″	Shillong Group/ Granite	150 0	170	Vh			0. 8	64 .2			65	Zones up to 65m
28	28	Polo Ground, Shillong.	Behind national stadium, 70m N28°E of Gate No. 1 of indoor sports trg. Hall.	N25°34'46.9", E91°53'43.3"	Shillong Group/Quartzite	160	120	250	150		1. 3	0. 7	13		15	
29	29	Polo Ground, Shillong.	50 m due east of VES 28.		Shillong Group/Quartzite	60	350	90	Vh		0. 7	3. 3	40		44	Zones up to 45m
30	30	Polo Ground, Shillong.	Inside the National Stadium right below commentator's box.	N25°34'48.9", E91°53'36.4"	Shillong Group/Quartzite	80	40	2			1	24			25	
31	31	Polo Ground, Shillong.	55m from VES 30, in the middle of the ground.		Shillong Group/Quartzite	200	40	200	3.5		2	3	35		40	
32	32	Polo Ground, Shillong.	100m from VES 30 on the western edge of the ground.		Shillong Group/Quartzite	60	10				8				8	
33	33	Polo Ground, Shillong.	In the cricket ground- 20m south of the road leading to the stadium - in the centre of the northern side of the Stadium.	N25°34'48.9", E91°53'36.4"	Shillong Group/Quartzite	80	200	80	500 0		1. 5	3. 5	22		27	
34	34	Polo Ground,	In the cricket	N25°34'48.9",	Shillong	70	Vh				29				29	

		Shillong.	ground - in centre of the eastern side of the stadium.	E91°53'36.4"	Group/Quartzite											
35	35	Polo Ground, Shillong.	In the cricket ground - in centre of the Southern side of the stadium.	N25°34'48.9", E91°53'36.4"	Shillong Group/Quartzite	120	18/ 0	600			1	23			24	
36	36	Polo Ground, Shillong.	In the cricket ground - in centre of the Western side of the stadium.	N25°34'48.9", E91°53'36.4"	Shillong Group/Quartzite	180	70	500	175		1	2	27		30	Zones from 30- 60m
37	37	Polo Ground, Shillong.	In the centre of the cricket ground, near the pitch.	N25°34'48.9", E91°53'36.4"	Shillong Group/Quartzite	100	130	50	100 0		1	2	9		12	
38	38	Polo Ground, Shillong.	50 m. North of the VES 35.	N25°34'48.9", E91°53'36.4"	Shillong Group/Quartzite	130	190	60	350		1	5	9		15	
39	39	Shilling - sports association ground	5 m centre of the podium/eastern side of the stadium	N25°34'55.2″, E91°53'22.1″	Shillong Group/Quartzite											
40	40	Shilling - sports association ground	30 m west of VES- 39	N25°34'55.2", E91°53'22.1"	Shillong Group/Quartzite	30	700	60			0. 8	19 .2			20	
41	41	Shilling - sports association ground	10m west of the road approaching to the JLN Sports complex and 90m from the back side gate of the foot ball ground (1 st Division)/centre of the eastern border of the	N25°34'52.6", E91°53'27.5"	Shillong Group/Quartzite	200	300	756	Vh		1	1	10		12	

			ground.													
42	42	Shilling - sports association ground	80m from the road leading to the JLN sports complex and 25m from the Western wall of the cricket ground.	N25°34'52.6", E91°53'27.5″	Shillong Group/Quartzite	300	500	80	700	400	0. 8	1. 2	3	15	20	
43	43	Shilling - sports association ground	110m N30° W of the gate of the cricket ground (backside on the western side)	N25°34'52.6", E91°53'27.5"	Shillong Group/Quartzite	700	900	150	60	400	0. 8	2. 2	6	12	21	
44	44	Shilling - sports association ground	6m S60°E of the Booking counter of the foot ball ground) 1 st Division.	N25°34'52.6", E91°53'27.5"	Shillong Group/Quartzite	160	180 0	150	90	400	1. 1	0. 7	3. 2	43	48	Zones up to 48m and may expect fractures up to 60m
45	45	Shilling - sports association ground	In the centre of the 2 nd foot ball ground and it is 90m S50°E of VES 2.	N25°34'52.6", E91°53'27.5"	Shillong Group/Quartzite	100	500	150	50	500 0	1. 1	0. 7	8. 2	7	17	
46	46	Shillong - sports association ground	Centre of the western border of the sports association ground	N25°34'55.2", E91°53'22.1"	Shillong Group/Quartzite	80	180	40	500 0		2	10	15		27	
47	47	Shillong – 16 th hole Golf course	105 m N55° East of Yellow stone on the road bearing no.B 50 NF.	N25°35'13.3", E91°53'48.9"	Shillong Group/Quartzite	250 0	230 0	180 0	180	700	1	2	10	25	38	Zones up to 40m
48	48	Shillong – 16 th hole Golf course	100 m NE of VES- 47 (16 th hole golf course).		Shillong Group/Quartzite	120 0	200 0	230	425 0		1	8	43		52	
49	49	Shillong – 16 th	100 m NE of VES-		Shillong	160	180	358	120	VH	0.	6.	3	29	39	

		hole Golf course	48 (16 th hole golf course).		Group/Quartzite	0	0				8	2				
50	50	Shillong – Golf course	120 m NW of VES-49 (16 th hole golf course).		Shillong Group/Quartzite	120 0	140 0	500 0	180		0. 8	5. 7	25 .5		32	
51	51	Shillong – Golf course	100 m NW of VES-50 and 37m south 75 E of electric pole (PHE PH 02B 33) near abandoned building.		Shillong Group/Quartzite	250 0	290 0	900 0	300		2. 5	1	12 .5		15	
52	52	Shillong – 17 th hole Golf course	125m south 55° west of VES-47 and 20m south 55 west of Yellow stone.	N25°35'13.3", E91°53'48.9"	Shillong Group/Quartzite	130 0	700	150			10	6			16	
53	53	Shillong – 17 th hole Golf course	Opposite to point 2(stone)		Shillong Group/Quartzite	200 0	500	100	800		9	16	20		45	Zones up to 45m.
54	54	Shillong – 17 th hole Golf course	100 m West of VES-53 , near 150-(X)		Shillong Group/Quartzite	150 0	500	130	300 0		9	14	17		40	
55	55	Shillong – 17 th hole Golf course	50 m West of VES - 54		Shillong Group/Quartzite	145 0	180 0	350	200	300 0	6	4	13	15	38	
56	56	Shillong – 17 th hole Golf course	60 m West of VES -55, opp. Lockto lodge		Shillong Group/Quartzite	120 0	180 0	550	70	430 0	1	1. 5	12 .5	7	22	
57	57	Shillong – 17 th hole Golf course	60 m east of point 2-stone and 15m north of 18- Mowpuling		Shillong Group/Quartzite	120 0	500	220	550		13	6	26		45	Zones up to 45m.
58	58	ICAR FARM HOUSE- Barnyhat	In the Experimental farm division of agriculture. 50 m east of existing		Shillong Group/Quartzite	100 0	92	30	999 9		1	3. 6	10 .4		15	Near existing borewell

			CGWB -EW(road to Umrai Airport)													
59	59	ICAR FARM HOUSE- Barnyhat	60 m South of bore-well		Shillong Group/Quartzite	200	377	610	500 0		1	11	21		33	
60	60	Shillong – 16 th hole Golf course	Near 10 hall canteen.	N25°35'13.3", E91°53'48.9"	Shillong Group/Quartzite	200 0	600 0	160 0	850	VH	0. 6	2. 4	2	25	29	
61	61	Garrison Grounds, Shillong	60m. SE of the Green which is nearer to the Entrance gate.		Shillong Group/Quartzite	250	588	250	110	500 0	1. 2	6. 7	11 .1	7	25	
62	62	Garrison Grounds, Shillong	55m. SW of the Green which is in the SE corner of the ground.		Shillong Group/Quartzite	800	400	500	50		1. 2	1. 8	12		15	
63	63	Garrison Grounds, Shillong	45m. NW of the Green which in the South Western corner of the ground.		Shillong Group/Quartzite	350	700	200	770		1. 2	2. 8	10		14	Zones up to 14m and fractures are at 60m
64	64	Garrison Grounds, Shillong	In between the VES 61 and VES 63. 100m from VES 62.		Shillong Group/Quartzite	600	800	270 0	20		1. 2	2. 8	31		35	
65	65	Tyrsad - E.Khasi Hills	78m North of Mowlam-Tyrsad, play ground sitting gallery.	N25°24'39.1", E91°40'00.6"	Granite/Quartzit e	600	150 00	200	800		0. 5	1. 5	10		12	
66	66	Sohjhursaw	35m South 30° west of sign board on the foot bridge and about 210 m from VES- 65.		Granite/Quartzit e	400 0	200 00	299 9	800		0. 6	2. 4	5		8	
67	67	Lyngiongthainro	140m South 60°	N25°24'59.9″,	Granite/Quartzit	200	800	46.	150	1	0.	2.	18		21	Zones

		h	west of Beshu- Maribaniang's house.	E91°41'01.8″	e	0	0	5				6	4					between 21 and 65m
68	68	Nonglwai Madanseir	90m North 35°west of community hall	N25°25'29.0", E91°43'16.4"	Shillong group/Quartzite	200 0	100 0	500	220 0			0. 6	4. 4	15			20	
69	69	Lyngiongyweipy llum	N40°East of the bridge and 300m South 70° west of VES 68.	N25°25'25.1", E91°43'06.9"	Shillong group/Quartzite	240 0	926	85	Vh			3	1	20			24	
70	70	Lyngiongmawp onghong	Near the Lower primary School. 65m South 70° west of football ground western goal post.	N25°25'34.4", E91°43'20.8"	Shillong group/Quartzite	170 0	400 0	200 0				3	5				8	
71	71	Umlyngkien	90m South of Check dam. West of the village in the valley.		Shillong group/Quartzite	150 0	600 0	800	200 0	300		1	3	17	38		65	Zones from 3to 22m and fractures beyond 65m.
72	72	Umlyngkien	12 m North of Check dam.		Shillong group/Quartzite	400 0	700 0	240 0	400	200 0		1	1	3	14		19	
73	73	Umlyngkien	50m west of VES- 72.		Shillong group/Quartzite	900	600 0	350 0	850	300 0		1. 5	0. 5	2	31		35	
74	74	Umlyngkien	50m South of VES-73		Shillong group/Quartzite	300 0	500 0	102 9	177 0			0. 5	5. 5	39			45	
75	75	Lyngkien-Kyien	110m S40W of ICDS school	N25°26'07.6", E91°43'49.9"	Shillong group/Quartzite	500	750	250	100 0	200 0		1. 5	10 .3	11 .2	39		62	Zones from 12 to 25m.
76	76	Wahlyngkein	125 m N75°E of VES-75	N25°26'05.1", E91°43'46.5"	Shillong group/Quartzite	800	150 0	400	900	200 0		1	2	15	12		30	
77	77	Wahlyngkein	270 m N30°E of VES -75	N25°26'00.0", E91°43'45.7"	Shillong group/Quartzite	700	100 0	644	250	900	43 00	1	2	3	23	2 9	55	
78	78	Wahlyngkein- Ramklang	300m S55°W of Bridge(Behind the Bus shelter on	N25°26'37.1", E91°44'05.8"	Shillong group/Quartzite	420 0	170 00	287 0	577	577	86 3	1	1	4	31		37	

			road side of the village)															
79	79	Wahlyngkein-	100m S25°W of		Shillong	100	300	250	129	250		1	3	14	28		46	
		Ramklang	VES-78.		group/Quartzite	0	0		0	0								
80	80	Madanlyngkien-	Centre of foot	N25°26'37.1",	Shillong	200	500	224	123			1	2.	1.	41		46	
		suien	ball ground	E91°44'05.8"	group/Quartzite	0	0						5	5				
81	81	Umlykein	300m South of		Shillong	500	800	800	200			1	2	1	16		20	
			VES-74 & 60m		group/Quartzite	0	0											
			North of check															
			dam near broken															
			bridge. Eastern															
			side of the river.															
82	82	Umlykein	50m SE of VES-81	N25°26'54.1",	Shillong	200	700	800	250			1.	1	16			20	
			also	E91°44'38.7"	group/Quartzite	0	0					5						
83	83	Umlykein	100 m west of		Shillong	500	130	800	250			1.	1.	5	16		24	
			VES-82		group/Quartzite	0	00					5	5					
84	84	Umlykein	120m of west of		Shillong	200	500	162	327	234	70	1.	1.	4	17	1	39	Zones
			VES-83		group/Quartzite	0	0	3			0	5	5			5		from 10 to
																		40m and
																		may
																		expect
																		deeper
05	95	Umlykoin	60 m wort of VES		Shillong	100	200	127	172			1	1	2	20		25	fractures.
05	05	Onlykein			group/Quartzite	100	300	2	1/5			1. 5	 	5	23		33	
86	86	Madan	Centre of the play		Shillong	0	300	128	400			1	2	0	15		10	
80	80	lewryngheln	ground		groun/Quartzite	50	300	120	400			1. 5	2	5	13		19	
		nlay ground	Bround		group/Quartzite							5						
		(fire-brigade-																
		Shillong)																
87	87	Umpling-	In the play		Shillong	100	220	120				0.	22				23	
		shillong	ground between		group/Quartzite		0	0				5	.5					
		5	failed bore-wells.															
88	15	Jongksha	120m North of	N 25°27′56.0″ E	Qurtzites of	175	850	840				1	2				3	Fracture
	4	_	the junction road	91°58'03.07"	Shillong group.	0		0										are
			with sign board															expected
			showing															between
			Mawlyngot-0km															and 60 –

			on Jongksha- Mawkynrew road.													100m.
89	15 5	Jongksha	140m S20°W of the junction road with sign board showing Mawlyngot-0km on Jongksha- Mawkynrew rd.	N 25°27′45.2″ E 91°58′28.1″	Qurtzites of Shillong group.	800 0	450 0	200 00	140 00		0. 9	2. 1	11		14	
90	15 6	Rapling	15m from the Eastern goal post of the foot ball ground.	N 25°28′29.1″ E 91°56′11.3″	Qurtzites of Shillong group.	400 0	200 0	250 00			0. 8	1. 1			1.9	
91	15 7	Rapling	About 100m south of the culvert on SMM road and nearly opp. to the church on the other side of the road.	N 25°28′20.8″ E 91°55′53.2″	Qurtzites of Shillong group.	550 0	660 0	220 00			1	2. 5			3.5	
92	15 8	Mawlyndun	At the centre of the play ground.	N 25°26′20.8″ E 91°55′50.8″	Qurtzites of Shillong group.	385 0	231 0				1. 9					Data not amenable for interpreta tion
93	15 9	Mawpran	20m NW of Western side goal post of foot ball ground.	N 25°17'57.7" E 91°57'10.3"	Granite/Shillong group	270 0	320 0	150 00	900		1. 2	3. 1	15 .7		20	
94	16 0	Mawpran	Centre of the foot ball ground.	N 25°17′52.2″ E 91°57′09.7″	Granite/Shillong	140 0	160 0	999 9	650		1. 2	5. 8	9		16	
95	16 1	Mawpran	70m North of the Western side goal post and 70m North of VES-160.	N 25°17′54.5″ E 91°57′09.4″	Granite/Shillong group	500 0	250 0	140 00	750		0. 9	3. 1	14		18	
96	16	Pynursla	19m N10°W of	N 25°18'25.7" E	Shillong	650	320	120			1.	18			20	

	2		Eastern goal post of the foot ball ground.	91°54'29.0″	Group/Sand stone of Jaintia Group		0	0			2	.8				
97	16 3	Pynursla	15m South of the sports club building.	N 25°18′08.0″ E 91°54′28.4″	Shillong Group/Sand stone of Jaintia Group	500	450 0	650			1. 1	26 .9			28	
98	16 4	Pongtong	40m due north of PHC main gate.	N 25°15′03.6″ E 91°56′59.5″	Shillong Group/Sand stone of Jaintia Group	550 0	700	130 0	425		1	10	23		34	Zones from 35m to 90m
99	16 5	Pongtong	60m west of the approach road to PHC and 75m north of PHC.	N 25°15′01.7″ E 91°56′57.7″	Shillong Group/Sand stone of Jaintia Group	260	950				1. 3				1.3	
10 0	16 6	Dingsapoh	In the centre of the foot ball ground.	N 25°35′30.3″ E 92°02′25.1″	Shillong Group/Sand stone of Jaintia Group	130 0	450	500 0			0. 9	1. 6			2.5	
10 1	16 7	Dingsapoh	SW corner of the foot ball ground.	N 25°35′31.0″ E 92°02′24.7″	Shillong Group/Sand stone of Jaintia Group	167	800	180	750 0		0. 9	2. 8			3.7	
10 2	16 8	Jaroit	In the centre of the foot ball ground.	N 25°36′53.4″ E 92°04′12.1″	Shillong Group/Sand stone of Jaintia Group	200 0	280 0	200 00	258 5		1. 1	3. 4	22 .5		27	
10 3	16 9	Nonghalli	On the approach road from Jaroit about 500 m before the Nonghalli village.	N 25°36′55.5″ E 92°06′16.7″	Shillong Group/Sand stone of Jaintia Group	800	85	600			5	30			35	Zones upto 35m
10 4	17 0	Golf course, Shillong.	14m north of Dangrphong Point 4.	N 25°35′23.3″ E 91°53′51.3″	Shillong Group/Sand stone of Jaintia Group	300 0	550	60	999 9		1. 1	3. 3	11 .6		16	
10 5	17 1	Golf course, Shillong.	100m West of VES-170.		Shillong Group/Sand	800	75	120	200 0		1. 2	7. 8	16		25	

					stone of Jaintia Group											
10 6	17 2	Golf course, Shillong.	100m SW of the VES-171.		Shillong Group/Sand stone of Jaintia Group	180 0	300	250 0	550		1	5	6		12	
10 7	17 3	Golf course, Shillong.	50 West of VES- 171.		Shillong Group/Sand stone of Jaintia Group	550 0	500	850	150	500 0	0. 9	19 .1	3	17	40	Zones from 23- 40m
10 8	17 4	Golf course, Shillong.	60m SW of VES- 173.		Shillong Group/Sand stone of Jaintia Group	220 0	160 0	130	800		1	2. 3	18 .7		22	
10 9	17 5	Golf course, Shillong.	120m SW of VES- 174.		Shillong Group/Sand stone of Jaintia Group	220 0	130	600 0			2	35			37	Zones up to 37m
11 0	17 6	Shella	On the RHS of the cart track leading to Hamuki and Kalateki villages from Shella and 28m SW of the South Eastern side goal post of the foot ball ground (Abandoned?)		Khasi Group(Sand Stone/Shales/Li me Stone)	160 00	200 00	100 0	90		1. 1	2.	17 .5		21	
11 1	17 7	Dhorom- Ichamati	N10°E of Dhorom LP School (Ichamati)	N 25°09'36.7" E 91°41'14.2"	Khasi Group(Sand Stone/Shales/Li me Stone)	110	85	32	110		1	1. 5	27 .5		30	Zones beyond 30m and up to 100m.
11 2	17 8	Dhorom- Ichamati	80m S35°E of VES-177.	N 25°09'34.2" E 91°41'17.7"	Khasi Group(Sand Stone/Shales/Li me Stone)	130	85	30	75		1	2. 7	19 .3		23	

11 3	17 9	Dhorom- Ichamati	47.5 due east of VES-178.		Khasi Group(Sand Stone/Shales/Li me Stone)	100	80	20	90		1	2. 5	21 .5		25	
11 4	18 0	Shella Bazar	On the bank of the river and 30m due west of steps leading to the PWD Guest House.	N 25°10'41.9" E 91°38'11.1"	Khasi Group(Sand Stone/Shales/Li me Stone)	650 0	110 00	180 0	100		1	2. 5	14 .5		18	Zones up to 40m.
11 5	18 1	Ichamati (Umtaru)	By the side of the road leading to Bhoolagang. North 50°W of Chunna Bhatti. 100m south of the foot bridge.	N 25°10'09.9" E 91°41'47.0"	Khasi Group(Sand Stone/Shales/Li me Stone)	130	125 0	65	20		0. 4	1. 8	13 .8		16	
11 6	18 2	Ichamati (Umtaru)	60m east of Sri Prem Nongkynriah's house. 120m N30°E of VES- 181.		Khasi Group(Sand Stone/Shales/Li me Stone)	200 0	330	80	650 0		1. 4	6. 6	17		23	
11 7	18 3	Jatab	At the centre of the foot ball ground.	N 25°09'35.1" E 91°39'06.4"	Khasi Group(Sand Stone/Shales/Li me Stone)	480 0	800 0	200 0	250		1	2	20		23	
11 8	18 4	Jatab	110m NE of Shell telephone exchange and in front of telephone pole No. 632.		Khasi Group(Sand Stone/Shales/Li me Stone)	350	300 0	80			1. 1	9. 9			11	
11 9	18 5	Dhorom	60m S50°W of Dhorom BRTF bridge.	N 25°09'18.8" E 91°41'25.7"	Khasi Group(Sand Stone/Shales/Li me Stone)	200	35	140			1. 3	26 .7			28	Beyond 30m and up to 100m.
12	18	Dhorom	100m North of	N 25°09'22.9" E	Khasi	95	22	60			3.	26			30	

0	6		BRTF bridge.	91°41'27.9"	Group(Sand Stone/Shales/Li me Stone)						4	.6				
12 1	18 7	Dongai	15m from the International boarder fencing gate with Bangladesh.	N 25°09'28.9" E 91°42'01.6"	Khasi Group(Sand Stone/Shales/Li me Stone)	34	8	90			14	11			25	
12 2	18 8	Ichamati	100 m South of bridge under construction on Ichamati – Shella road.	N 25°10'0.7" E 91°41'18.2"	Khasi Group(Sand Stone/Shales/Li me Stone)	210	75	20	200		1	7	32		40	
12 3	18 9	Mawsmai	At the centre of the foot ball ground.	N 25°14′31.7″ E 91°43′47.3″	Lime stone	210 0	160	100			4	22			26	
12 4	20 9	Rangshken	44m due NE from the south western basket post of the basket ball ground.	N 25°28′39.3″ E 91°43′50.7″	Shillong Group(Quarzite/ Phillites)	300 0	300	145	600		0. 8	3. 2	21		25	Zones up to 30m and fractures from 80m to 100m.
12 5	21 0	Rangshken	90mN60°W of VES-209.	N 25°28.4'1.2" E 91°43'48.3"	Shillong Group(Quarzite/ Phillites)	250 0	200	500	175		2. 5	11 .5	41		55	
12 6	21 1	Rangshken	70m N40°E of VES-210.	N 25°28'42.8" E 91°43'49.7"	Shillong Group(Quarzite/ Phillites)	220 0	370 0	900	250	150	1	2. 5	7. 5	24	35	
12 7	21 2	Rangshken	70m N40°E of VES-209.	N 25°28'41" E 91°43'52.2"	Shillong Group(Quarzite/ Phillites)	200 0	500	75	450	15	1	2. 4	11 .6	25	40	
12 8	21 3	Rangshken	85m S60°E of VES-212.	N 25°28'39.9" E 91°43'55.1"	Shillong Group(Quarzite/ Phillites)	350 0	120 0	150	230		1	2. 5	26 .5		30	fractures beyond 30m.
12 9	21 4	Rangshken	85m S60°E of VES-209.	N 25°28'37.2" E 91°43'54.1"	Shillong Group(Quarzite/ Phillites)	140	450	999 9			20	22			42	
13	21	Rangshken	50m S40°E of	N 25°28'39.8" E	Shillong	450	180	120	350		0.	1.	10		12	

0	5		VES-210.	91°43'47.1"	Group(Quarzite/ Phillites)		0				8	2				
13 1	21 6	Rangshken	10m south of the western end of the saw mill and 70 mN75E of the house Sri Nebellin.	N 25°28'47.4" E 91°43'40.5"	Shillong Group(Quarzite/ Phillites)	250 0	450	600			2. 7	9. 3			12	
13 2	21 7	Rangshken	S50°E of VES-216.		Shillong Group(Quarzite/ Phillites)	200 0	150 0	250			1. 5	4. 5			6	
13 3	21 8	Rangshken	100m east of VES- 217.	N 25°28'45.8" E 91°43'45.7"	Shillong Group(Quarzite/ Phillites)	200 0	110 0	130			1	6			7	
13 4	21 9	Rangshken	95m SE of VES- 217 and 60m S35W of VES-218.	N 25°28'44.1" E 91°43'44.1"	Shillong Group(Quarzite/ Phillites)	300 0	200 0	500	60		0. 8	2. 7	18 .5		22	
13 5	22 0	Rangshken	80m S65°E of VES-219 and 120m N60W of VES-210	N 25°28′43.1″ E 91°43′45.7″	Shillong Group(Quarzite/ Phillites)	180 0	140 0	250	80	400	0. 5	3. 5	15	17	36	
13 6	22 1	Rangshken (Mawjam)	30m due N40°E from NW corner of the Mawjam school.	N 25°28'47.1" E 91°43'58.2"	Shillong Group(Quarzite/ Phillites)	150 0	220 0	70	3		0. 65	2. 35	5		8	
13 7	22 2	Rangshken (Mawjam)	78m N35°E of VES-221.	N 25°28'48.9" E 91°43'59.3"	Shillong Group(Quarzite/ Phillites)	250 0	70	10			1. 2	6. 8			8	
13 8	22 3	Rangshken (Mawjam)	82m S25°E of VES-222.	N 25°28′46.8″ E 91°43′01.1″	Shillong Group(Quarzite/ Phillites)	105 0	900	120	250		1	2. 7	16 .3		20	Zones 3m to 20m and fractures between 20m and 70m.

Annexure 7: Dug Well Pump Test Data

Test	Dug Well
Location	Dhankheti
Owner	Govt. of Assam
SWL	2.41 m bmp
Depth	3.60 m bmp
Dia	0.80 m
MP	0.65 m
Motor	
Q =m3/hr	3.2
Duration	12 min
DD	0.78 m
Latitude	25°31'57.9"
Longitude	91°53′34.4″
RL (m)	1515
Date of	
Test	14.12.2017

	Drawdown data	
Time		
(min)	DTW (m bmp)	DD (m)
1	2.5	0.09
2	2.59	0.18
3	2.655	0.245
4	2.73	0.32
5	2.79	0.38
6	2.85	0.44
7	2.91	0.5
8	2.97	0.56
9	3.03	0.62
10	3.08	0.67
11	3.14	0.73
12	3.19	0.78

Recovery measurement data

					Time	Recovery
SI. No.	Time (Min)	DTW (m bmp)	RDD (m)	S1/S2	(min)	%
1	0	3.19	0.78	1.000	0	0.00
2	1	3.17	0.76	1.026	1	2.56
3	2	3.16	0.75	1.040	2	3.85
4	3	3.12	0.71	1.099	3	8.97
5	4	3.1	0.69	1.130	4	11.54
6	5	3.08	0.67	1.164	5	14.10
7	6	3.06	0.65	1.200	6	16.67
8	7	3.04	0.63	1.238	7	19.23
9	8	3.02	0.61	1.279	8	21.79
10	9	3	0.59	1.322	9	24.36
11	10	2.99	0.58	1.345	10	25.64
12	15	2.9	0.49	1.592	15	37.18
13	20	2.84	0.43	1.814	20	44.87
14	25	2.77	0.36	2.167	25	53.85
15	30	2.72	0.31	2.516	30	60.26
16	40	2.68	0.27	2.889	40	65.38
17	50	2.6	0.19	4.105	50	75.64
18	60	2.54	0.13	6.000	60	83.33
19	80	2.47	0.06	13.000	80	92.31
20	100	2.44	0.03	26.000	100	96.15
21	120	2.425	0.015	52.000	120	98.08

Drawdown data

Test	Dug Well
Location	Nonymsong
Owner	Private
SWL	3.36m bmp
Depth	4.70 m bmp
Dia	0.75 m
MP	0.70 m
Motor	
Q =m3/hr	3
Duration	20
DD	0.45 m
Latitude	25°34'46.76"
Longitude	91°54'24.71"
RL (m)	
Date of	
Test	15.02.2018

Time	DTW (m	
(min)	bmp)	DD (m)
1	3.4	0.04
2	3.43	0.07
3	3.46	0.1
4	3.49	0.13
5	3.51	0.15
6	3.53	0.17
7	3.55	0.19
8	3.57	0.21
9	3.6	0.24
10	3.62	0.26
11	3.64	0.28
12	3.66	0.3
13	3.68	0.32
14	3.69	0.33
15	3.71	0.35
16	3.73	0.37
17	3.75	0.39
18	3.77	0.41
19	3.79	0.43
20	3.81	0.45

Recovery measurement													
		DTW (m			Time	Recoverv							
SI. No.	Time (Min)	bmp)	RDD (m)	S1/S2	(min)	%							
1	0	3.81	0.45	1.000	0	0.00							
2	1	3.77	0.41	1.098	1	8.89							
3	2	3.74	0.38	1.184	2	15.56							
4	3	3.72	0.36	1.250	3	20.00							
5	4	3.7	0.34	1.324	4	24.44							
6	5	3.7	0.34	1.324	5	24.44							
7	6	3.69	0.33	1.364	6	26.67							
8	7	3.67	0.31	1.452	7	31.11							
9	8	3.66	0.3	1.500	8	33.33							
10	9	3.65	0.29	1.552	9	35.56							
11	10	3.64	0.28	1.607	10	37.78							
12	12	3.62	0.26	1.731	12	42.22							
13	14	3.61	0.25	1.800	14	44.44							
14	16	3.59	0.23	1.957	16	48.89							
15	18	3.58	0.22	2.045	18	51.11							
16	20	3.57	0.21	2.143	20	53.33							
17	25	3.54	0.18	2.500	25	60.00							
18	30	3.53	0.17	2.647	30	62.22							
19	35	3.51	0.15	3.000	35	66.67							
20	40	3.49	0.13	3.462	40	71.11							
21	45	3.47	0.11	4.091	45	75.56							
22	50	3.46	0.1	4.500	50	77.78							
23	60	3.45	0.09	5.000	60	80.00							
24	70	3.44	0.08	5.625	70	82.22							
25	90	3.41	0.05	9.000	90	88.89							
26	110	3.38	0.02	22.500	110	95.56							

Annexure 8: Soil Infiltration Test data

	Time	After	Before	Depth of	Cummulative	Infiltration		
Time (t)	difference	filling	filling	Infiltration	Infiltration	rate	f-fc	Remarks
min	min	cm	cm	cm	cm	cm/hr	fO	
						f0 = 42		
						from the		
0		23.2		0	0	curve	ft	
1	1		21.1	2.1	2.1	126	84	
2	1		19.7	1.4	3.5	84	42	
3	1		18.5	1.2	4.7	72	30	
4	1		17.5	1	5.7	60	18	
5	1		16.6	0.9	6.6	54	12	
6	1		15.7	0.9	7.5	54	12	
7	1		14.8	0.9	8.4	54	12	
8	1		14	0.8	9.2	48	6	
9	1		13.2	0.8	10	48	6	
10	1		12.6	0.6	10.6	36	-6	
12	2	23.2	21.5	1.7	12.3	51	9	Refilled
14	2	23.2	21.5	1.7	14	51	9	Refilled
16	2	23.2	21.6	1.6	15.6	48	6	Refilled
18	2	23.2	21.7	1.5	17.1	45	3	Refilled
20	2	23.2	21.9	1.3	18.4	39	-3	Refilled
25	5	23.2	19.3	3.9	22.3	46.8	4.8	Refilled
30	5	23.2	19.3	3.9	26.2	46.8	4.8	Refilled
35	5	23.2	19.4	3.8	30	45.6	3.6	Refilled
40	5	23.2	19.5	3.7	33.7	44.4	2.4	Refilled
45	5	23.2	19.5	3.7	37.4	44.4	2.4	Refilled
50	5	23.2	19.6	3.6	41	43.2	1.2	Refilled
55	5	23.2	19.6	3.6	44.6	43.2	1.2	Refilled
60	5	23.2	19.6	3.6	48.2	43.2	1.2	Refilled
70	10	23.2	16	7.2	55.4	43.2	1.2	Refilled
80	10	23.2	16.1	7.1	62.5	42.6	0.6	Refilled
90	10	23.2	16.1	7.1	69.6	42.6	0.6	Refilled
100	10	23.2	16.2	7	76.6	42	0	Refilled
120	20	23.2	9.2	14	90.6	42	0	Refilled
140	20	23.2	9.2	14	104.6	42	0	Refilled
160	20	23.2	9.2	14	118.6	42	0	Refilled
180	20	23.2	9.2	14	132.6	42	0	Refilled

1. Location – Nongkohlew

	Time		Deferre	Depth of		Infiltratio		
	differenc	After	Before	Infiltratio	Cummulativ	n rate		Remark
Time (t)	е	filling	ming	n	e Infiltration		f-fc	S
min	min	cm	cm	cm	cm	cm/hr	f0	
						f0 = 8.4		
						from the		
0		24.5		0	0	curve	ft	
1	1		22.9	1.6	1.6	96	87.6	
2	1		22.2	0.7	2.3	42	33.6	
3	1		21.6	0.6	2.9	36	27.6	
4	1		21.2	0.4	3.3	24	15.6	
5	1		20.8	0.4	3.7	24	15.6	
6	1		20.5	0.3	4	18	9.6	
7	1		20.1	0.4	4.4	24	15.6	
8	1		19.9	0.2	4.6	12	3.6	
9	1		19.6	0.3	4.9	18	9.6	
10	1		19.4	0.2	5.1	12	3.6	
10		24.5						Refilled
12	2		24	0.5	5.6	15	6.6	
14	2		23.4	0.6	6.2	18	9.6	
16	2		23	0.4	6.6	12	3.6	
18	2		22.5	0.5	7.1	15	6.6	
20	2		22	0.5	7.6	15	6.6	
20		24.5						Refilled
25	5		23.4	1.1	8.7	13.2	4.8	
30	5		22.5	0.9	9.6	10.8	2.4	
35	5		21.6	0.9	10.5	10.8	2.4	
40	5		20.8	0.8	11.3	9.6	1.2	
45	5		20	0.8	12.1	9.6	1.2	
50	5		19.3	0.7	12.8	8.4	0	
55	5		18.6	0.7	13.5	8.4	0	
60	5		17.9	0.7	14.2	8.4	0	
100		24.5						Refilled
70	10		23.1	1.4	15.6	8.4	0	
80	10		21.7	1.4	17	8.4	0	
90	10		20.3	1.4	18.4	8.4	0	
100	10		18.9	1.4	19.8	8.4	0	
100		24.5						Refilled
120	20		21.7	2.8	22.6	8.4	0	
140	20		18.9	2.8	25.4	8.4	0	

2. Location – Mawsiatkhnam

	Timo	Poforo	٨ftr	Donth of	Cummulativo		
Timet	diff	filling	filling	Depthon	Infiltration	Infilt rate	ffc
Time t		IIIIIIg	IIIIIIg				1-10
min	min	cm	cm	cm	Cm		TU
		20				t0 = 32.4 trom	<i>c</i> .
0		20		0	0	the curve	ft
1	1	21./	24	2.3	2.3	138	105.6
2	1	20	21.7	1.7	4	102	69.6
3	1	22.5	24	1.5	5.5	90	57.6
4	1	23.1	24	0.9	6.4	54	21.6
5	1	22.8	24	1.2	7.6	72	39.6
6	1	22.8	24	1.2	8.8	72	39.6
7	1	22.8	24	1.2	10	72	39.6
8	1	23.1	24	0.9	10.9	54	21.6
9	1	23	24	1	11.9	60	27.6
10	1	23.1	24	0.9	12.8	54	21.6
15	5	19.2	24	4.8	17.6	57.6	25.2
20	5	19.5	24	4.5	22.1	54	21.6
25	5	19.8	24	4.2	26.3	50.4	18
30	5	20.3	24	3.7	30	44.4	12
35	5	20.4	24	3.6	33.6	43.2	10.8
40	5	20.4	24	3.6	37.2	43.2	10.8
50	10	17.3	24	6.7	43.9	40.2	7.8
60	10	17.8	24	6.2	50.1	37.2	4.8
70	10	18.1	24	5.9	56	35.4	3
80	10	18.1	24	5.9	61.9	35.4	3
90	10	18.6	24	5.4	67.3	32.4	0
100	10	18.6	24	5.4	72.7	32.4	0
110	10	18.6	24	5.4	78.1	32.4	0
130	20	13.2	24	10.8	88.9	32.1	0
150	20	13.2	24	10.8	99.7	32.1	0
170	20	13.2	24	10.8	110 5	32.4	0

3. Location-Forest Range Office, Cherrapunjee

4. Location-Sohra-Pomsohmen

	Time	Before	Aftr	Depth of	Cummulative		
Time t	diff	filling	filling	Infiltration	Infiltration	Infilt rate	f-fc
min	min	cm	cm	cm	cm	cm/hr	f0
						f0 = 16.2	
						from the	
0		24.2		0	0	curve	ft
1	1	24.2	23.4	0.8	0.8	48	31.8
2	1	24.2	23.8	0.4	1.2	24	7.8
3	1	24.2	23.9	0.3	1.5	18	1.8
4	1	24.2	24	0.2	1.7	12	-4.2
5	1	24.2	24	0.2	1.9	12	-4.2
6	1	24.2	24	0.2	2.1	12	-4.2
7	1	24.2	24	0.2	2.3	12	-4.2
8	1	24.2	24	0.2	2.5	12	-4.2
9	1	24.2	24	0.2	2.7	12	-4.2
10	1	24.2	24	0.2	2.9	12	-4.2
15	5	24.2	22.3	1.9	4.8	22.8	6.6
20	5	24.2	22.3	1.9	6.7	22.8	6.6
25	5	24.2	22.4	1.8	8.5	21.6	5.4
30	5	24.2	22.5	1.7	10.2	20.4	4.2
35	5	24.2	22.4	1.8	12	21.6	5.4
40	5	24.2	22.5	1.7	13.7	20.4	4.2
50	10	24.2	21.3	2.9	16.6	17.4	1.2
60	10	24.2	21.4	2.8	19.4	16.8	0.6
70	10	24.2	21.5	2.7	22.1	16.2	0
80	10	24.2	21.5	2.7	24.8	16.2	0
100	20	24.2	18.8	5.4	30.2	16.2	0
120	20	24.2	18.8	5.4	35.6	16.2	0
140	20	24.2	18.8	5.4	41	16.2	0

5. Location-Sohra

	Time	Before	Aftr	Depth of	Cummulative	Infilt	
Time t	diff	filling	filling	Infiltration	Infiltration	rate	f-fc
min	min	cm	cm	cm	cm	cm/hr	f0
						f0 = 3	
						from	
						the	
0		26		0	0	curve	ft
1	1	26	25.8	0.2	0.2	12	9
2	1	25.8	25.7	0.1	0.3	6	3
3	1	25.7	25.5	0.2	0.5	12	9
4	1	25.5	25.4	0.1	0.6	6	3
6	2	25.4	25.3	0.1	0.7	3	0
8	2	26	25.9	0.1	0.8	3	0
10	2	26	25.9	0.1	0.9	3	0
15	5	26	25.9	0.1	1	1.2	-1.8
20	5	25.9	25.6	0.3	1.3	3.6	0.6
25	5	25.6	25.3	0.3	1.6	3.6	0.6
30	5	25.3	25	0.3	1.9	3.6	0.6
40	10	25	24.5	0.5	2.4	3	0
50	10	24.5	24	0.5	2.9	3	0
60	10	24	23.5	0.5	3.4	3	0
70	10	23.5	23	0.5	3.9	3	0
90	20	23	22	1	4.9	3	0
110	20	22	21	1	5.9	3	0
130	20	21	20	1	6.9	3	0

6. Location-Umtyngar

	Time	Before	Aftr	Depth of	Cummulative	Infilt	
Time t	diff	filling	filling	Infiltration	Infiltration	rate	f-fc
min	min	cm	cm	cm	cm	cm/hr	fO
						f0 = 5.7	
						from	
						the	
0		26.2		0	0	curve	ft
1	1	26.2	25.5	0.7	0.7	42	36.3
2	1	25.5	25	0.5	1.2	30	24.3
3	1	25	24.6	0.4	1.6	24	18.3
4	1	24.6	24.1	0.5	2.1	30	24.3
5	1	24.1	23.7	0.4	2.5	24	18.3
6	1	23.7	23.4	0.3	2.8	18	12.3
7	1	23.4	23	0.4	3.2	24	18.3
8	1	23	22.7	0.3	3.5	18	12.3
9	1	22.7	22.4	0.3	3.8	18	12.3
10	1	22.4	22.1	0.3	4.1	18	12.3
15	5	26.3	24.6	1.7	5.8	20.4	14.7
20	5	24.6	23	1.6	7.4	19.2	13.5
25	5	23	21.4	1.6	9	19.2	13.5
30	5	21.4	19.9	1.5	10.5	18	12.3
35	5	19.9	18.4	1.5	12	18	12.3
40	5	18.4	17	1.4	13.4	16.8	11.1
50	10	26.3	24.1	2.2	15.6	13.2	7.5
60	10	24.1	22	2.1	17.7	12.6	6.9
70	10	22	19.9	2.1	19.8	12.6	6.9
80	20	19.9	17.8	2.1	21.9	6.3	0.6
100	20	26.3	24.3	2	23.9	6	0.3
120	20	26.3	24.4	1.9	25.8	5.7	0
140	20	26.3	24.4	1.9	27.7	5.7	0

7.	Location -	- EAC
----	------------	-------

	Time	Before	Aftr	Depth of	Cummulative	Infilt	
Time t	diff	filling	filling	Infiltration	Infiltration	rate	f-fc
min	min	cm	cm	cm	cm	cm/hr	fO
						f0 =	
						27.3	
						from	
						the	
0		25.3		0	0	curve	ft
1	1	25.3	24.3	1	1	60	32.7
2	1	24.3	23.4	0.9	1.9	54	26.7
3	1	23.4	22.5	0.9	2.8	54	26.7
4	1	22.5	21.7	0.8	3.6	48	20.7
5	1	21.7	21.1	0.6	4.2	36	8.7
6	1	21.1	20.4	0.7	4.9	42	14.7
7	1	26.1	25.4	0.7	5.6	42	14.7
8	1	25.4	24.6	0.8	6.4	48	20.7
9	1	24.6	23.8	0.8	7.2	48	20.7
10	1	23.8	23	0.8	8	48	20.7
15	5	23	20.6	2.4	10.4	28.8	1.5
20	5	26	23.1	2.9	13.3	34.8	7.5
25	5	26	23.3	2.7	16	32.4	5.1
30	5	26	23.7	2.3	18.3	27.6	0.3
35	5	26	23.3	2.7	21	32.4	5.1
40	5	26	23.3	2.7	23.7	32.4	5.1
50	10	26	20.3	5.7	29.4	34.2	6.9
60	10	26	21.8	4.2	33.6	25.2	-2.1
70	10	26	21.3	4.7	38.3	28.2	0.9
80	10	26	21.5	4.5	42.8	27	-0.3
90	10	26	21.3	4.7	47.5	28.2	0.9
100	10	26	21.3	4.7	52.2	28.2	0.9
110	10	26	21.3	4.7	56.9	28.2	0.9
130	20	26	16.9	9.1	66	27.3	0
150	20	26	16.8	9.2	75.2	27.6	0.3
170	20	26	16.9	9.1	84.3	27.3	0
190	20	26	16.9	9.1	93.4	27.3	0
	Time	Before	Aftr	Depth of	Cummulative	Infilt	
--------	------	---------	---------	--------------	--------------	-----------	------
Time t	diff	filling	filling	Infiltration	Infiltration	rate	f-fc
min	min	cm	cm	cm	cm	cm/hr	fO
						f0 = 31.2	
						from the	
0		23.8		0	0	curve	ft
1	1	23.8	22.2	1.6	1.6	96	64.8
2	1	22.2	21.4	0.8	2.4	48	16.8
3	1	21.4	20.6	0.8	3.2	48	16.8
4	1	20.6	19.8	0.8	4	48	16.8
5	1	19.8	19.2	0.6	4.6	36	4.8
6	1	23.8	23.2	0.6	5.2	36	4.8
7	1	23.2	22.5	0.7	5.9	42	10.8
8	1	22.5	21.7	0.8	6.7	48	16.8
9	1	21.7	20.9	0.8	7.5	48	16.8
10	1	20.9	20.3	0.6	8.1	36	4.8
15	5	23.8	20.4	3.4	11.5	40.8	9.6
20	5	23.8	20.6	3.2	14.7	38.4	7.2
25	5	23.8	20.6	3.2	17.9	38.4	7.2
30	5	23.8	20.6	3.2	21.1	38.4	7.2
35	5	23.8	20.6	3.2	24.3	38.4	7.2
40	5	23.8	20.6	3.2	27.5	38.4	7.2
50	10	23.8	17.5	6.3	33.8	37.8	6.6
60	10	23.8	17.6	6.2	40	37.2	6
70	10	23.8	17.7	6.1	46.1	36.6	5.4
80	10	23.8	17.9	5.9	52	35.4	4.2
90	10	23.8	17.8	6	58	36	4.8
100	10	23.8	17.9	5.9	63.9	35.4	4.2
120	20	23.8	12.8	11	74.9	33	1.8
140	20	23.8	13.3	10.5	85.4	31.5	0.3
160	20	23.8	13.4	10.4	95.8	31.2	0
180	20	23.8	13.4	10.4	106.2	31.2	0

8. Location – Bhanung

		• • •					
		Before	Aftr	Depth of	Cummulative	Infilt	
Time t	Time diff	filling	filling	Infiltration	Infiltration	rate	f-fc
min	min	cm	cm	cm	cm	cm/hr	fO
0		23.1		0	0	f0 = 11.7	ft
1	1	23.1	22.5	0.6	0.6	36	24.3
2	1	22.5	22	0.5	1.1	30	18.3
3	1	22	21.6	0.4	1.5	24	12.3
4	1	21.6	21.2	0.4	1.9	24	12.3
5	1	21.2	20.8	0.4	2.3	24	12.3
6	1	20.8	20.5	0.3	2.6	18	6.3
7	1	20.5	20.1	0.4	3	24	12.3
8	1	20.1	19.7	0.4	3.4	24	12.3
9	1	19.7	19.4	0.3	3.7	18	6.3
10	1	19.4	19.1	0.3	4	18	6.3
15	5	23.3	21.9	1.4	5.4	16.8	5.1
20	5	23.3	22	1.3	6.7	15.6	3.9
25	5	23.3	22	1.3	8	15.6	3.9
30	5	23.3	22	1.3	9.3	15.6	3.9
40	10	23.3	20.8	2.5	11.8	15	3.3
50	10	23.3	21	2.3	14.1	13.8	2.1
60	10	23.3	21.2	2.1	16.2	12.6	0.9
70	10	23.3	21.2	2.1	18.3	12.6	0.9
80	10	23.3	21.2	2.1	20.4	12.6	0.9
100	20	23.3	19.3	4	24.4	12	0.3
120	20	23.3	19.4	3.9	28.3	11.7	0
140	20	23.3	19.4	3.9	32.2	11.7	0
160	20	23.3	19.4	3.9	36.1	11.7	0

9. .Location – Dympep, Sohra

10.Location – Mylliem-12 kharkemeh

		Before	Aftr	Depth of	Cummulative	Infilt	
Time t	Time diff	filling	filling	Infiltration	Infiltration	rate	f-fc
min	min	cm	cm	cm	cm	cm/hr	fO
						f0 = 7.2	
						from the	
0		23.5		0	0	curve	ft
1	1	23.5	23	0.5	0.5	30	22.8
2	1	23	22.8	0.2	0.7	12	4.8
3	1	22.8	22.7	0.1	0.8	6	-1.2
4	1	22.7	22.5	0.2	1	12	4.8
5	1	22.5	22.3	0.2	1.2	12	4.8
6	1	22.3	22.1	0.2	1.4	12	4.8
7	1	22.1	21.9	0.2	1.6	12	4.8
8	1	21.9	21.7	0.2	1.8	12	4.8
9	1	21.7	21.5	0.2	2	12	4.8
10	1	21.5	21.4	0.1	2.1	6	-1.2
15	5	23.5	22.8	0.7	2.8	8.4	1.2
20	5	23.5	22.9	0.6	3.4	7.2	0
25	5	23.5	22.9	0.6	4	7.2	0
30	5	23.5	22.9	0.6	4.6	7.2	0
40	10	23.5	22.3	1.2	5.8	7.2	0
50	10	23.5	22.3	1.2	7	7.2	0
60	10	23.5	22.3	1.2	8.2	7.2	0
80	20	23.5	21.1	2.4	10.6	7.2	0
100	20	23.5	21.1	2.4	13	7.2	0
120	20	23.5	21.1	2.4	15.4	7.2	0

Time t	Time	Before	Aftr filling	Depth of	Cummulative	Infilt	f fo
11me t		IIIIng	IIIIng	Infiltration	Infiltration	rate	1-1C
mın	mın	cm	cm	cm	cm	cm/hr	f0
						f0 = 2.4 from the	
0		26.1		0	0	curve	ft
1	1	26.1	25.8	0.3	0.3	18	15.6
2	1	25.8	25.6	0.2	0.5	12	9.6
3	1	25.6	25.5	0.1	0.6	6	3.6
4	1	25.5	25.3	0.2	0.8	12	9.6
5	1	25.3	25.1	0.2	1	12	9.6
6	1	25.1	25	0.1	1.1	6	3.6
7	1	25	24.9	0.1	1.2	6	3.6
8	1	24.9	24.8	0.1	1.3	6	3.6
9	1	24.8	24.7	0.1	1.4	6	3.6
10	1	24.7	24.6	0.1	1.5	6	3.6
15	5	26.1	25.8	0.3	1.8	3.6	1.2
20	5	25.8	25.4	0.4	2.2	4.8	2.4
25	5	25.4	25	0.4	2.6	4.8	2.4
30	5	25	24.8	0.2	2.8	2.4	0
35	5	24.8	24.5	0.3	3.1	3.6	1.2
40	5	24.5	24.2	0.3	3.4	3.6	1.2
50	10	26.1	25.7	0.4	3.8	2.4	0
60	10	25.7	25.3	0.4	4.2	2.4	0
70	10	25.3	24.9	0.4	4.6	2.4	0
90	20	24.9	24.1	0.8	5.4	2.4	0
110	20	24.1	23.3	0.8	6.2	2.4	0
130	20	23.3	22.5	0.8	7	2.4	0

10. Location - Pomkaniew

		Before	Aftr	Depth of	Cummulative	Infilt	
Time t	Time diff	filling	filling	Infiltration	Infiltration	rate	f-fc
min	min	cm	cm	cm	cm	cm/hr	f0
						f0 = 3.6	
						from the	
0		24.6		0	0	curve	ft
1	1	24.6	24.5	0.1	0.1	6	2.4
2	1	24.5	24.4	0.1	0.2	6	2.4
3	1	24.4	24.3	0.1	0.3	6	2.4
4	1	24.3	24.2	0.1	0.4	6	2.4
5	1	24.2	24	0.2	0.6	12	8.4
6	1	24	23.9	0.1	0.7	6	2.4
7	1	23.9	23.8	0.1	0.8	6	2.4
8	1	23.8	23.7	0.1	0.9	6	2.4
9	1	23.7	23.6	0.1	1	6	2.4
10	1	23.6	23.5	0.1	1.1	6	2.4
15	5	23.5	23	0.5	1.6	6	2.4
20	5	23	22.6	0.4	2	4.8	1.2
25	5	22.6	22.2	0.4	2.4	4.8	1.2
30	5	22.2	21.8	0.4	2.8	4.8	1.2
40	10	21.8	21.2	0.6	3.4	3.6	0
50	10	21.2	20.6	0.6	4	3.6	0
60	10	20.6	20	0.6	4.6	3.6	0
80	20	24.6	23.4	1.2	5.8	3.6	0
100	20	24.6	23.4	1.2	7	3.6	0
120	20	24.6	23.4	1.2	8.2	3.6	0

11. Location - Laitlynkgot, Pynursla

13. Location - Tyrsad

Time	Time	After	Before	Depth of	Cummulative	Infiltrati		Remark
(t)	difference	filling	filling	Infiltration	Infiltration	on rate	f-fc	S
min	min	cm	cm	cm	cm	cm/hr	fO	
0		23.8		0	0	f0 = 0.15	ft	
1	1		23.6	0.2	0.2	12	11.85	
2	1		23.5	0.1	0.3	6	5.85	
3	1		23.5	0	0.3	0	-0.15	
4	1		23.5	0	0.3	0	-0.15	
5	1		23.5	0	0.3	0	-0.15	
6	1		23.4	0.1	0.4	6	5.85	
7	1		23.4	0	0.4	0	-0.15	
8	1		23.4	0	0.4	0	-0.15	
9	1		23.4	0	0.4	0	-0.15	
10	1		23.3	0.1	0.5	6	5.85	
15	5		23.2	0.1	0.6	1.2	1.05	
20	5		23.1	0.1	0.7	1.2	1.05	
25	5		23	0.1	0.8	1.2	1.05	
30	5		22.9	0.1	0.9	1.2	1.05	
40	10		22.9	0	0.9	0	-0.15	
50	10		22.7	0.2	1.1	1.2	1.05	
70	20		22.5	0.2	1.3	0.6	0.45	
90	20		22.4	0.1	1.4	0.3	0.15	
110	20		22.3	0.1	1.5	0.3	0.15	
130	20		22.1	0.2	1.7	0.6	0.45	
170	40		22	0.1	1.8	0.15	0	
210	40		21.9	0.1	1.9	0.15	0	
250	40		21.8	0.1	2	0.15	0	

14. Location - Laitdiengsai

Time	Time	After	Before filling	Depth of	Cummulative	Infiltration rate		Describe
(t)	difference	Tilling		Inflitration	Infiltration		T-TC	Remarks
min	min	cm	cm	cm	cm	cm/hr	10	
0		20.5		0	0	f0= 0.6 from the curve	ft	
1	1	2010	20.5	0	0	0	-0.6	
2	1		20.4	0.1	0.1	6	5.4	
3	1		20.4	0	0.1	0	-0.6	
4	1		20.4	0	0.1	0	-0.6	
5	1		20.3	0.1	0.2	6	5.4	
6	1		20.3	0	0.2	0	-0.6	
7	1		20.3	0	0.2	0	-0.6	
8	1		20.3	0	0.2	0	-0.6	
9	1		20.3	0	0.2	0	-0.6	
10	1		20.2	0.1	0.3	6	5.4	
15	5		20.1	0.1	0.4	1.2	0.6	
20	5		20	0.1	0.5	1.2	0.6	
30	10		19.8	0.2	0.7	1.2	0.6	
40	10		19.7	0.1	0.8	0.6	0	
50	10		19.5	0.2	1	1.2	0.6	
60	10		19.4	0.1	1.1	0.6	0	
80	20		19.1	0.3	1.4	0.9	0.3	
100	20		18.9	0.2	1.6	0.6	0	
120	20		18.7	0.2	1.8	0.6	0	
140	20		18.5	0.2	2	0.6	0	

15. Location – Golf links

	Time	After	Before	Depth of	Cummulative	Infiltration		
	difference	filling	filling	Infiltration	Infiltration	rate	f-fc	Remarks
min	min	cm	cm	cm	cm	cm/hr	fO	
						f0 =5.4		
						from the		
0		25.5		0	0	curve	ft	
1	1		25	0.5	0.5	30	24.6	
2	1		24.6	0.4	0.9	24	18.6	
3	1		24.3	0.3	1.2	18	12.6	
4	1		24	0.3	1.5	18	12.6	
5	1		23.8	0.2	1.7	12	6.6	
6	1		23.5	0.3	2	18	12.6	
7	1	25	23.2	0.3	2.3	18	12.6	Refilled
8	1		24.7	0.3	2.6	18	12.6	
9	1		24.4	0.3	2.9	18	12.6	
10	1	24.3	24.1	0.3	3.2	18	12.6	Refilled
12	2		23.9	0.4	3.6	12	6.6	
14	2	26	23.5	0.4	4	12	6.6	Refilled
16	2		25.5	0.5	4.5	15	9.6	
18	2		25	0.5	5	15	9.6	
20	2		24.5	0.5	5.5	15	9.6	
25	5		24	0.5	6	6	0.6	
30	5	25	23.5	0.5	6.5	6	0.6	Refilled
35	5		24.5	0.5	7	6	0.6	
40	5	25	24	0.5	7.5	6	0.6	
50	10		24	1	8.5	6	0.6	Refilled
60	10	25	24	1	9.5	6	0.6	Refilled
70	10		23	1	10.5	6	0.6	
80	10	25	22.1	0.9	11.4	5.4	0	Refilled
100	20		23.1	1.9	13.3	5.7	0.3	
120	20	25	21.3	1.8	15.1	5.4	0	Refilled
140	20		23.2	1.8	16.9	5.4	0	
160	20	25	21.4	1.8	18.7	5.4	0	Refilled
180	20		23.2	1.8	20.5	5.4	0	
200	20		21.4	1.8	22.3	5.4	0	

Time	Time	After	Before	Depth of	Cummulative	Infiltration		
(t)	difference	filling	filling	Infiltration	Infiltration	rate	f-fc	Remarks
min	min	cm	cm	cm	cm	cm/hr	f0	
						f0 =		
						2.4from		
0		22		0	0	the curve	ft	
1	1		21.5	0.5	0.5	30	-12	
2	1		21.1	0.4	0.9	24	-18	
3	1		20.8	0.3	1.2	18	-24	
4	1		20.5	0.3	1.5	18	-24	
5	1		20.2	0.3	1.8	18	-24	
6	1		19.8	0.4	2.2	24	-18	
7	1	20.2	19.5	0.3	2.5	18	-24	Refilled
8	1		20	0.2	2.7	12	-30	
9	1		20	0	2.7	0	-42	
10	1		19.8	0.2	2.9	12	-30	
12	2		19.4	0.4	3.3	12	-30	
14	2		19.2	0.2	3.5	6	-36	
16	2		19.1	0.1	3.6	3	-39	
18	2		19	0.1	3.7	3	-39	
19	1		18.9	0.1	3.8	3	-39	
20	1		18.8	0.1	3.9	1.2	-40.8	
25	2	20	18.3	0.5	4.4	6	-36	Refilled
30	5		19.5	0.5	4.9	3	-39	
35	5		19.1	0.4	5.3	2.4	-39.6	
40	10		18.7	0.4	5.7	2.4	-39.6	
50	10		18.2	0.6	6.3	3.6	-38.4	
60	10		17.5	0.6	6.9	3.6	-38.4	
70	20		16.9	0.6	7.5	3.6	-38.4	
80	10	22	16.3	0.6	8.1	1.8	-40.2	Refilled
100	20		21.1	0.9	9	5.4	-36.6	
120	20	22	20.2	0.9	9.9	2.7	-39.3	Refilled
140	20	22	21.1	0.9	10.8	2.7	-39.3	Refilled
180	40		20.4	1.6	12.4	4.8	-37.2	
220	40	22	18.8	1.6	14	2.4	-39.6	Refilled
260	40		20.4	1.6	15.6	2.4		

16. Location - Lapalang

17. Location – Madan Sangmein

			Defens			Infiltration		
Time	Time	After	Before	Depth of	Cummulative	rate		
(t)	difference	filling	ming	Infiltration	Infiltration		f-fc	Remarks
min	min	cm	cm	cm	cm	cm/hr	fO	
						f0 = 42		
						from the		
0		26		0	0	curve	ft	
1	1		25.2	0.8	0.8	48	43.5	
2	1		25	0.2	1	12	7.5	
3	1		24	1	2	60	55.5	
4	1		23.5	0.5	2.5	30	25.5	
5	1		23.3	0.2	2.7	12	7.5	
6	1		23	0.3	3	18	13.5	
7	1	26	22.6	0.4	3.4	24	19.5	Refilled
8	1		25.5	0.5	3.9	30	25.5	
9	1		25.2	0.3	4.2	18	13.5	
10	1		25	0.2	4.4	12	7.5	
11	1		24.8	0.2	4.6	12	7.5	
12	1		24.6	0.2	4.8	12	7.5	
13	1		24.4	0.2	5	12	7.5	
14	1		24.2	0.2	5.2	12	7.5	
15	1		24	0.2	5.4	12	7.5	
20	1	26	23.4	0.6	6	36	31.5	Refilled
25	5		23.4	0.6	6.6	7.2	2.7	
30	5		22.7	0.7	7.3	8.4	3.9	
35	5		22.1	0.6	7.9	7.2	2.7	
40	5		21.5	0.6	8.5	7.2	2.7	
50	10	22	20.5	1	9.5	6	1.5	Refilled
60	10		21	1	10.5	6	1.5	
70	10		20.2	0.8	11.3	4.8	0.3	
80	10	23	19.4	0.8	12.1	4.8	0.3	Refilled
90	10		22.2	0.8	12.9	4.8	0.3	
100	10		21.4	0.8	13.7	4.8	0.3	
110	10		20.6	0.8	14.5	4.8	0.3	
130	20	26	19.1	1.5	16	4.5	0	Refilled
150	20		23.5	1.5	17.5	4.5	0	
170	20	26	21	1.5	19	4.5	0	Refilled
190	20		23.5	1.5	20.5	4.5	0	
210	20		21	1.5	22	4.5	0	

18. Location -Pynursla

	Time		Poforo			Infiltrati		
	differe	After	filling	Depth of	Cummulative	on rate		Remar
Time (t)	nce	filling	IIIIIIg	Infiltration	Infiltration		f-fc	ks
min	min	cm	cm	cm	cm	cm/hr	fO	
						f0 = 8 1from		
						the		
0		23		0	0	curve	ft	
1	1		22.5	0.5	0.5	30	21.9	
2	1		22.3	0.2	0.7	12	3.9	
3	1		22	0.3	1	18	9.9	
4	1		21.8	0.2	1.2	12	3.9	
5	1		21.6	0.2	1.4	12	3.9	
6	1		21.4	0.2	1.6	12	3.9	
7	1		21.2	0.2	1.8	12	3.9	
								Refille
8	1	23	21	0.2	2	12	3.9	d
9	1		22.8	0.2	2.2	12	3.9	
10	1		22.6	0.2	2.4	12	3.9	
12	2	22	22.2	0.4	2.0	10	2.0	Refille
12	2	23	22.2	0.4	2.8	12	3.9	a
14	2		22.5	0.5	3.3	15	6.9	
10	2		22.1	0.4	3./	12	3.9	
18	2		21.7	0.4	4.1	12	3.9	
20	Z		21.3	0.4	4.5	12	3.9	Pofillo
25	5	23	20.4	0.9	5.4	10.8	2.7	d
30	5		22.1	0.9	6.3	10.8	2.7	-
								Refille
35	5	23	21	1.1	7.4	13.2	5.1	d
40	5		22	1	8.4	12	3.9	
45	5		21.2	0.8	9.2	9.6	1.5	
								Refille
50	5	23	20.3	0.9	10.1	10.8	2.7	d
55	5		22	1	11.1	12	3.9	
60	5	23	21	1	12.1	12	3.9	
70	10		21.4	1.6	13.7	9.6	1.5	Defill
20	10	22	20	1 /	15 1	Q /I	0.5	d
00 00	10	23	20	1.4	16 5	Q /	0.3	u
50	10		21.0	1.4	10.5	0.4	0.3	Refille
100	10	23	20.2	1.4	17.9	8.4	0.3	d
120	20		20.4	2.6	20.5	7.8	-0.3	
								Refille
140	20	23	17.7	2.7	23.2	8.1	0	d
160	20		20.3	2.7	25.9	8.1	0	
180	20		17.6	2.7	28.6	8.1	0	

19. Location : Lawsohtun

Time (t)	Time differe nce	After filling	Before filling	Depth of Infiltratio n	Cummulative Infiltration	Infiltratio n rate	f-fc	Remarks
min	min	cm	cm	cm	cm	cm/hr	fO	
						f0 = 10.5 from the		
0		22		0	0	curve	ft	
1	1		21.4	0.6	0.6	36	25.5	
2	1		20.7	0.7	1.3	42	31.5	
3	1		20.2	0.5	1.8	30	19.5	
4	1		19.8	0.4	2.2	24	13.5	
5	1		19.4	0.4	2.6	24	13.5	
6	1		18.9	0.5	3.1	30	19.5	
7	1		18.4	0.5	3.6	30	19.5	
8	1		17.9	0.5	4.1	30	19.5	
9	1		17.4	0.5	4.6	30	19.5	
10	1		16.9	0.5	5.1	30	19.5	
12	2		19.2	0.8	5.9	24	13.5	
14	2		18.4	0.8	6.7	24	13.5	
16	2		17.6	0.8	7.5	24	13.5	
18	2		16.8	0.8	8.3	24	13.5	
20	2	22	15.4	0.8	9.1	24	13.5	Refilled
25	5		20.5	1.5	10.6	18	7.5	
30	5	22	19.1	1.4	12	16.8	6.3	Refilled
35	5		20.5	1.5	13.5	18	7.5	
40	5	22	19	1.5	15	18	7.5	Refilled
50	5		19.5	2.5	17.5	30	19.5	
60	5	22	17.2	2.3	19.8	27.6	17.1	Refilled
70	5		19.7	2.3	22.1	27.6	17.1	Refilled
80	5	22	19.6	2.3	24.4	27.6	17.1	Refilled
100	20		18.5	3.5	27.9	10.5	0	
120	20		15.1	3.4	31.3	10.2	-0.3	
140	20	22	16.1	3.5	34.8	10.5	0	Refilled
160	20		18.5	3.5	38.3	10.5	0	
180	20		15	3.5	41.8	10.5	0	

	Time	After	Before	Depth of	Cummulative	Infiltration		
Time (t)	difference	filling	filling	Infiltration	Infiltration	rate	f-fc	Remarks
min	min	cm	cm	cm	cm	cm/hr	f0	
						f0 = 16.8		
						from the		
0		25		0	0	curve	ft	
1	1		24.5	0.5	0.5	30	13.2	
2	1		24	0.5	1	30	13.2	
3	1		23.5	0.5	1.5	30	13.2	
4	1		23	0.5	2	30	13.2	
5	1		22.6	0.4	2.4	24	7.2	
6	1		22.1	0.5	2.9	30	13.2	
7	1		21.6	0.5	3.4	30	13.2	
8	1	25	21.2	0.4	3.8	24	7.2	Refilled
9	1		24.5	0.5	4.3	30	13.2	
10	1		24	0.5	4.8	30	13.2	
12	2		23.1	0.9	5.7	27	10.2	
14	2	25	22.2	0.9	6.6	27	10.2	Refilled
16	2		24	1	7.6	30	13.2	
18	2		23	1	8.6	30	13.2	
20	2	25	22.1	0.9	9.5	27	10.2	Refilled
25	5		23.3	1.7	11.2	20.4	3.6	
30	5	25	21.8	1.5	12.7	18	1.2	Refilled
35	5		23.4	1.6	14.3	19.2	2.4	
40	5	25	21.8	1.6	15.9	19.2	2.4	Refilled
50	5		21.9	3.1	19	37.2	20.4	
60	5	25	18.9	3	22	36	19.2	Refilled
70	5		21.9	3.1	25.1	37.2	20.4	
80	5	25	18.9	3	28.1	36	19.2	Refilled
90	10		21.9	3.1	31.2	18.6	1.8	
100	10		18.9	3	34.2	18	1.2	
120	20	25	13.1	5.8	40	17.4	0.6	Refilled
140	20	25	19.4	5.6	45.6	16.8	0	Refilled
160	20		19.4	5.6	51.2	16.8	0	
180	20		13.8	5.6	56.8	16.8	0	

20. Location: Laban

	Time	After	Before	Depth of	Cummulative	Infiltration		
Time (t)	difference	filling	filling	Infiltration	Infiltration	rate	f-fc	Remarks
min	min	cm	cm	cm	cm	cm/hr	fO	
						f0 = 17.1		
						from the		
0		27		0	0	curve	ft	
1	1		26	1	1	60	42.9	
2	1		25.2	0.8	1.8	48	30.9	
3	1	27	24.6	0.6	2.4	36	18.9	
4	1		26.5	0.5	2.9	30	12.9	
5	1		26	0.5	3.4	30	12.9	
6	1		23.4	0.6	4	36	18.9	
7	1		22.9	0.5	4.5	30	12.9	
8	1	27	22.3	0.6	5.1	36	18.9	
9	1		26.5	0.5	5.6	30	12.9	
10	1		26	0.5	6.1	30	12.9	
12	2		25	1	7.1	30	12.9	
14	2		24	1	8.1	30	12.9	
16	2	27	23.2	0.8	8.9	24	6.9	Refilled
18	2		26.2	0.8	9.7	24	6.9	
20	2		25.6	0.8	10.5	24	6.9	
22	2		25.1	0.5	11	15	-2.1	
24	2		24.5	0.6	11.6	18	0.9	
26	2		23.7	0.8	12.4	24	6.9	
28	2	27	22.9	0.8	13.2	24	6.9	Refilled
30	2		26.2	0.8	14	24	6.9	
35	5		24.2	2	16	24	6.9	
40	5		22.4	1.8	17.8	21.6	4.5	
45	5	27	21	1.4	19.2	16.8	-0.3	Refilled
50	5	27	25.6	1.4	20.6	16.8	-0.3	Refilled
55	5		25.6	1.4	22	16.8	-0.3	
60	5	27	24.2	1.4	23.4	16.8	-0.3	Refilled
70	10	27	24.1	2.9	26.3	17.4	0.3	Refilled
80	10		24.2	2.8	29.1	16.8	-0.3	
90	10	27	21.4	2.8	31.9	16.8	-0.3	Refilled
100	10	27	24.2	2.8	34.7	16.8	-0.3	Refilled
120	20	27	21.5	5.5	40.2	16.5	-0.6	Refilled
140	20	27	21.3	5.7	45.9	17.1	0	Refilled
160	20	27	21.3	5.7	51.6	17.1	0	Refilled
180	20		21.3	5.7	57.3	17.1	0	

21 . Location: Mawryngkneng

22 . Location : Umphyrnai

			Defens			Infiltration		
	Time	After	Before	Depth of	Cummulative	rate		
Time (t)	difference	filling	ming	Infiltration	Infiltration		f-fc	Remarks
min	min	cm	cm	cm	cm	cm/hr	fO	
						f0 = 37.5		
						from the		
0		25		0	0	curve	ft	
1	1		24	1	1	60	22.5	
2	1		24.1	0.9	1.9	54	16.5	
3	1		23.1	1	2.9	60	22.5	
4	1		22.1	1	3.9	60	22.5	
5	1	25	21.2	0.9	4.8	54	16.5	Refilled
6	1		24	1	5.8	60	22.5	
7	1		23	1	6.8	60	22.5	
8	1		22.1	0.9	7.7	54	16.5	
9	1	25	21.2	0.9	8.6	54	16.5	Refilled
10	1		24.1	0.9	9.5	54	16.5	
12	2		22.3	1.8	11.3	54	16.5	Refilled
14	2	25	20.6	1.7	13	51	13.5	Refilled
16	2		23.4	1.6	14.6	48	10.5	
18	2	25	21.8	1.6	16.2	48	10.5	Refilled
20	2		23.4	1.6	17.8	48	10.5	
25	5	25	19.5	3.9	21.7	46.8	9.3	Refilled
30	5		21.3	3.7	25.4	44.4	6.9	
35	5	25	19.4	3.7	29.1	44.4	6.9	Refilled
40	5		21.4	3.6	32.7	43.2	5.7	
45	5	25	19.5	3.6	36.3	43.2	5.7	Refilled
50	5		21.4	3.6	39.9	43.2	5.7	
55	5	25	17.8	3.6	43.5	43.2	5.7	Refilled
60	5	25	21.4	3.6	47.1	43.2	5.7	Refilled
70	10	25	17.8	7.2	54.3	43.2	5.7	Refilled
80	10	25	18	7	61.3	42	4.5	Refilled
90	10	25	18	7	68.3	42	4.5	Refilled
100	10	25	18	7	75.3	42	4.5	Refilled
120	20	25	12.2	12.8	88.1	38.4	0.9	Refilled
140	20	25	12.4	12.6	100.7	37.8	0.3	Refilled
160	20	25	12.5	12.5	113.2	37.5	0	Refilled
180	20		12.5	12.5	125.7	37.5	0	

Annexure 9(A): Location of Borewells Drilled by PHE, Shillong in Urban Shillong Area

S.No.				Total	Static	
				Depth	water	Yield
	Location	Latitude	Longitude	drilled	level	(lit/hr)
1	Mawdatbaki DTW	25.601	91.891	112	24	7000
2	Mawlai Umsohlang	25.607	91.893	110	24	7000
3	Umsohlang Treatment plant	25.608	91.893			
4	Mawlai Umsaw	25.637	91.917	110	15	7500
5	Mawpat Wahheh	25.595	91.921	140	36	2279
6	Shaw Shaw	25.595	91.923	120	13	8040
7	Wahheh(V)	25.596	91.926	125	12	16320
8	Wahheh(VI)	25.593	91.920	120	10	20700
9	Wahheh(VII)	25.593	91.920	120	8	23100
10	Wahheh(VIII)	25.984	92.546	150	30	17400
11	Ladshyiap	25.597	91.911	125	19	8500
12	Chanmari#I	25.589	91.900	80	25	5460
13	Chanmari#II	25.584	91.902	80	20	5400
14	St.Nanak	25.585	91.904	120	15	8500
15	Shiv Mandir	25.595	91.904	120	18	4000
16	Shiv Mandir	25.597	91.911	120	17	4000
17	Lankyrding	25.984	92.505	150	16	8500
18	Dog Squad	25.979	92.509	110	19	7700
19	Lad Chanmari	25.978	92.510	110	23	6900
20	Near Pynthorbah Market	25.984	92.510	126	26	8500
21	Near Shiv Mandir	25.998	92.509	105	28	5500
22	6 th Furlong	25.583	91.892	70	12	4200
23	Mawpun	25.587	91.894	100	18	6900
24	Teapot	25.589	91.896	110	20	5500
25	Dog Squad	25.585	91.895	110	15.5	6000
26	Polo opp.CRP camp	25.583	91.889	110	12	5500
27	Meter Factory	25.590	91.889	80	14	6000
28	Jingthangbriew	25.587	91.881	80	14	8500
29	Radha Krishna	25.961	92.535	110	16	6500
30	R & R colony	25.953	92.527	100	15	4500
31	R & R Colony(near Bangalis					
	Primary School	25.954	92.547	130	18	5500
32	Nongmynsong, Umkdait#IV	25.586	91.911	110	7	20400
33	Umkadait#V	25.991	92.539	120	12	16377
34	Dongkamon#VI	25.970	92.544	110	28	20400
35	Lankyrding#VII	25.585	91.907	126	24	20400
36	Lankyrding#VIII	25.585	91.906	115	12	10436
37	Dongkadiang#IX	25.968	92.516	115.5	12	20400
38	Dongkamon#X	25.968	92.510	104	10	20400
39	Umkadait#XI	25.990	92.527	126	15	20400
40	Umkadait#XII	25.992	92.509	176	24	20400
41	Near Presbyterian Church					
	Langkyrding	25.588	91.906	100	15	6600
42	Lumnawrie	25.570	91.896	80	15	8500
43	Mawpun	25.570	91.850	71	18	3000
44	Nonglum	25.570	91.848	120	20	3000
45	Mawria	25.571	91.854	200	30	1884

46	Dongshaneng #I	25.979	92.547	154	25	9198
47	Dongshaneng #III	25.973	92.534	134	28	8047
48	Dongsurok #IV	25.862	92.540	143	14	8047
49	Dongumbah #V	25.951	92.541	82.5	24	25692
50	Dongsharum # VIII	25.965	92.523	115.5	28	28491
51	Lumdiengmet # IX	25.973	92.536	115.5	20	37598
52	Lumdiengmet # X	25.973	92.523	126.5	22	28419
53	Lumdiengmet # XI	25.969	92.519	121	28	23130
54	Mawkynrew communuty Hall	26.035	92.524	120	15	20700
55	Um jarain	26.017	92.524	120	15	23100
56	Nonghseh Rim wss	25.544	91.858	124	30	8046

Annexure 9(B): Details of Private Bore wells Drilled in Urban Shillong Area

S.No.				Total	
				Dept	Yield(in
	Location	Latitude	Longitude	Drilled	litres/hr)
1	5th Mile Upper Shillong	25.521	91.843	100	5652
2	Umlyngka Nonglum	25.567	91.847	120	5652
3	Umlyngka Lumpongdeng	25.571	91.845	110	6788
4	Lummawbah	25.573	91.853	120	6788
5	Lummawbah	25.574	91.863	120	5652
6	Lummawbah	25.572	91.863	125	5652
7	Lummawbah	25.572	91.860	120	4638
8	Lummawbah	25.572	91.857	120	5652
9	Nongkseh-3	25.574	91.859	120	5652
10	Nongkseh-3	25.574	91.855	130	5652
11	Nongkseh Madan	25.575	91.8568	135	5652
12	Nongkseh Madan	25.576	91.8591	120	5652
13	Nongkseh Madan	25.575	91.8587	120	6788
14	Nongkseh Madan	25.577	91.8588	125	6788
15	Nongkseh Madan	25.577	91.859	125	5652
16	Nongkseh Madan	25.577	91.8583	120	5652
17	Nongkseh Madan	25.577	91.8599	120	6788
18	Nongkseh Madan	25.577	91.8597	120	6788
19	Nongkseh Madan	25.577	91.8598	125	5652
20	Nongkseh Madan	25.576	91.8595	125	6788
21	Umlyngka Nonglum	25.568	91.8579	120	6788
22	Umpling Dongsurok	25.574	91.9179	100	5652
23	R & R colony Rynjah	25.571	91.9136	100	3741
24	R & R colony Rynjah	25.571	91.9136	100	4638
25	R & R colony Rynjah	25.574	91.9155	85	4638
26	R & R colony Plot No. 151 Rynjah	25.572	91.9165	150	4638
27	R & R colony Rynjah	25.571	91.9139	150	3741
28	Circle Mawpat	25.600	91.9264	120	3741
29	Mawmuroh Mawpat	25.595	91.9219	120	4638
30	Mawmuroh Mawpat	25.594	91.9218	120	4638
31	Circle 1 Mawpat	25.597	91.9209	130	3741
32	Mawmuroh Mawpat	25.594	91.9223	125	4638
33	Circle 1 Mawpat	25.598	91.9228	120	3741
34	Shaw shaw Circle2 mawpat	25.595	91.9235	120	4638
35	Circle 1 Mawpat	25.597	91.9213	125	3741

36	Shaw Shaw Mawpat	25.595	91.9237	120	4638
37	Circle 2 Mawpat	25.600	91.9242	100	4638
38	Lankyrding Nongmynsong	25.585	91.9058	100	4638
39	Umkdait Nongmynsong	25.590	91.9150	110	5652
40	Umkdait Nongmynsong	25.587	91.9144	110	5652
41	Dongkamon Nongmynsong	25.583	91.9086	100	5652
42	Dongkamon Nongmynsong	25.582	91.9068	120	4638
43	Khliehshong Pynthorumkhrah	25.583	91.8959	140	3741
44	Pdengshnong Pynthorumkhrah	25.583	91.8957	150	4638
45	Khliehshong Pynthorumkhrah	25.600	91.8955	160	4638
46	Khliehshong Pynthorumkhrah	25.583	91.8159	120	5652
47	Khliehshong Pynthorumkhrah	25.583	91.8158	120	5652
48	Khliehshong Pynthorumkhrah	25.583	91.8968	140	5652
49	Khliehshong Pynthorumkhrah	25.583	91.8965	150	5652
50	Khliehshong Pynthorumkhrah	25.584	91.8962	145	4638
51	Pdengshnong Pynthorumkhrah	25.584	91.8948	100	4638
52	Mawlai Umsaw Mawtawar	25.634	91.9227	100	3741
53	Mawlai Umshing Mawkynroh Bl.I	25.615	91.9117	90	4638
54	Mawlai Umshing Mawkynroh Bl.I	25.615	91.912	95	3741
55	Mawlai Umshing Mawkynroh Bl.I	25.614	91.9112	91	4638
56	Mawlai Umshing Mawkynroh Bl.I	25.613	91.9107	100	4638
57	Mawlai Umshing Mawkynroh Bl.III	25.610	91.9074	91	3741
58	Mawlai Umshing Mawkynroh Bl.III	25.613	91.9061	122	4638
59	Mawlai Umshing Mawkynroh Bl.III	25.609	91.9077	90	3741
60	Mawlai Umshing Mawkynroh Bl.III	25.609	91.9057	91	3741
61	Mawlai Umshing Mawkynroh Bl.III	25.608	91.9059	105	4638
62	Mawlai Umshing Mawkynroh Bl.III	25.609	91.906	85	3741
63	Mawlai Umshing Mawkynroh Bl.III	25.609	91.9059	85	3741
64	Mawlai Umshing Mawkynroh Bl.III	25.609	91.9055	90	3741
65	Mawlai Umshing Mawkynroh Bl.III	25.609	91.909	85	5652
66	Mawlai Umshing Mawkynroh Bl.III	25.609	91.9064	90	5652
67	Mawlai Umshing Mawkynroh Bl.III	25.608	91.9066	110	3741
68	Mawlai Umshing Mawkynroh Bl.III	25.611	91.9035	90	3741

(Source: PHE, Shillong)

Annexure 10: Ground water Resources data of East Khasi Hills

a) General Description of Ground Water Assessment in East Khasi Hills district for 2017-18 (area in ha)

Name of Ground Water Assessment Unit	East Khasi Hills
Type of Ground Water Assessment Unit	District
Type of rock formation	Granitic-Gneissic complex, Quartzites, Intrusives,
	Valleyfills and Limestone
Total area of Groundwater Assessment Unit	256764.80
Hilly area	167314.70
Command area	0
Non-command area	105261
Poor ground water quality area	0
Area considered for groundwater recharge	105261

b) Ground Water Resource Potential in East Khasi Hills district during 2017-18 (in ham)

Assessment Unit / District	East Khasi Hills
Command/ Non-Command/ Total	Total
Recharge from rainfall during monsoon season	7128.22
Recharge from other sources during monsoon season	0
Recharge from rainfall during non-monsoon season	3297.08
Recharge from other sources during non- monsoon	206.92
season	
Total Ground Water Recharge	10632.22
Natural discharge during non-monsoon season	1063.22
Net Annual Ground Water Availability	9569.00

c) Balance Ground Water Resources Available and Stage of Groundwater Development in the Study Area

Resource Estimation Parameters	2017-18
Net GW availability	9569.00
GW draft for irrigation	0
Gross GW extraction	234.61
Annual Allocation of ground water for domestic &	469.22
industrial water supply upto 2025	
Balance GW for future irrigation development	9099.78
Stage of GW Extraction	2.45%

d) Categorization for Ground Water Development of East Khasi Hills district during 2017-18

Assessment Unit/ District	East Khasi Hills
Stage Of Ground Water Development (%)	2.45%
Is there a significant decline of pre-monsoon water	No
table levels	
(Yes / No)	
Is there a significant decline of post-monsoon water	No
table levels	
(Yes / No)	
Categorization For Future Ground Water Development	Safe
(Safe / Semi-Critical/ Critical/ Over-Exploited)	

Annexure 11: Ground water Resources data of Urban Shillong

Name of Ground Water Assessment Unit	Urban Shilong
Type of Ground Water Assessment Unit	City
Type of rock formation	Granitic-Gneissic complex, Quartzites, Intrusives, Valley
	fills
Total area of Groundwater Assessment Unit	18035.20
Hilly area	2224.30
Command area	0
Non-command area	15810.90
Poor ground water quality area	0
Area considered for groundwater recharge	15810.90

a) General Description of Ground Water Assessment in Greater Shillong for 2017-18 (area in ha)

b) Balance Ground Water Resources Available (Ham) and Stage of Groundwater Development in the Study Area

Resource Estimation Parameters	2017-18
Rainfall recharge during monsoon	760.90
Rainfall recharge during non-monsoon	354.96
Recharge from other sources	0.00
Annual GW recharge	1115.86
Natural Discharge	111.59
Annual Extractable GW Resources	1004.27
GW draft for irrigation	0
Gross GW draft	167.00
Annual Allocation of ground water for domestic &	334.00
industrial water supply upto 2025	
Balance GW for future irrigation development	670.27
Stage of development	16.63

c) Categorization for Ground Water Development of Greater/Urban Shillong during 2017-18

Assessment Unit/ District	Greater Shillong
Stage Of Ground Water Development (%)	16.63
Is there a significant decline of pre-monsoon water	No
table levels	
(Yes / No)	
Is there a significant decline of post-monsoon water	No
table levels	
(Yes / No)	
Categorization For Future Ground Water Development	Safe
(Safe / Semi-Critical/ Critical/ Over-Exploited)	

FIELD PHOTOGRAPHS

Ground Water Exploration at JNV Mawphlang

Ground Water Exploration at NIT Cherrapunjee

Ground Water Exploration at Nongpyiur

Ground Water Exploration at Water Resources Dept.

Soil Infiltration Studies

Dug well Pump test

Springs in East Khasi Hills District